Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies show new role for protein in cancer development

27.06.2003


In two groundbreaking papers published in two prestigious journals over the last two months, University of Southern California researchers have provided evidence of two previously unknown functions for a protein that is central to the transcription of genes. Both papers shed light on the role this protein-called TATA-binding protein, or TBP-may play in promoting the development of cancer.



"What we’ve found is that changes in the cellular concentrations of this critical transcription factor cause specific changes in gene expression patterns, which then contribute to cellular transformation, and a cancer cell phenotype," says Deborah Johnson, Ph.D., professor of molecular pharmacology and toxicology at the USC School of Pharmacy and biochemistry and molecular biology in the Keck School of Medicine.

The first paper, published in Molecular and Cell Biology in May, showed that TBP levels are increased by oncogenic proteins like Ras, one of the first genes found to be involved in human cancers. And that increase, Johnson says, has implications for the development of cancer at the cellular level.


In the cellular production of proteins, the information encoded in DNA is transcribed different types of RNA-ribonucleic acid. This process occurs with the help of enzymes called RNA polymerases. There are three RNA polymerases found in a typical cell, and TATA-binding protein has been shown-by Johnson’s lab and others-to be absolutely critical to the function of all of them.

Because TBP is so central and so basic to the process of transcription, Johnson explains, it was long assumed that its cellular levels remain steady at all times. "It was viewed as a housekeeping protein. Nobody even thought that it could be regulated," she said.

When Johnson questioned that assumption and tried manipulating TBP levels in cells, she found that they could indeed be upregulated-and that the proteins that were especially good at increasing TBP levels were proteins like Ras, which are associated with cancer.

Knowing that oncogenic proteins can raise TBP levels in a laboratory dish was one thing; finding out what happens in a living cell when TBP levels rise was another. "That was the next question we asked," Johnson says. "We wanted to know whether TBP was actually driving Ras to transform normal cells into malignant cells."

In a series of experiments and collaborations with a number of researchers from the Keck School of Medicine, Johnson was able to show that when cells are manipulated so that TBP levels can no longer be increased, Ras is no longer able to transform cells.

And when she increased TBP levels without Ras being present, she found that oncogenesis continued unabated. "In fact," notes Johnson, "we tested it in an animal model, and found that increased TBP alone, without Ras, still leads to tumors in nude mice."

Whether TBP plays a similar role in the development of cancer in humans is something that Johnson is now pursuing in collaboration with USC/Norris Cancer Center pathologist Louis Dubeau, M.D., Ph.D., testing tumor cells for their TBP levels. "If TBP is a true contributor to oncogenesis," Johnson says, "we should see increased TBP levels in a clinically relevant proportion of patients." Preliminary data gathered thus far support this hypothesis.

The second study, published in the June issue of The EMBO Journal (EMBO is the European Molecular Biology Organization), looked at the other side of the oncogenesis coin. "We found in the Molecular and Cellular Biology paper that oncogenes like Ras can increase cellular concentrations of TBP," notes Johnson. "If that’s true, then we might expect tumor suppressors to reduce the level of TBP."

To find out if their expectations were correct, Johnson and her colleagues looked at p53, a tumor suppressor that’s found to be mutated in about half of all human cancers. "P53 keeps cells from growing and proliferating out of control," Johnson says.

Like TBP, p53 is also a transcription factor, regulating expression of the genes involved in cell cycle control and apoptosis, the cellular version of suicide. And previous studies have shown that p53 can bind to TBP. But what the biological relevance of that was had gone unreported, until now.

To determine the relevance, Johnson manipulated the levels of p53 in cells, watching to see what happened with TBP in those cells. What she found was that p53 seems to suppress an important function of TBP, preventing it from working with one of the RNA polymerases. "It’s not changing the cellular concentration of TBP," Johnson explains, "but is instead changing its effective concentration, preventing TBP from forming a complex with other proteins. Forming that complex is essential to TBP’s role in transcribing genes."

These two studies, Johnson points out, are really just complementary parts of a larger picture of the role of TBP in oncogenesis. "With these papers," she says, "we now have two very different scenarios that show that increasing the TBP concentration in a cell leads to that cell’s ability to transform into a tumor cell. And in the second scenario, we have a tumor suppressor that decreases the effective concentration of TBP by altering its ability to function. Together, they both contribute to the ability of the cell to transform from normal to malignant."



Sandra A. S. Johnson, Louis Dubeau, Michael Kawalek, Andrew Dervan, Axel H. Schonthal, Chi V. Dang, Deborah Johnson, "Increased Expression of TATA-Binding Protein, the Central Transcription Factor, Can Contribute to Oncogenesis." Molecular and Cellular Biology, May 2003.

Diane Crighton, Annette Woiwode, Cheng Zhang, Nihar Mandavia, Jennifer P. Morton, Lorna J. Warnock, Jo Milner, Robert J. White, Deborah L. Johnson, "p53 Represses RNA Polymerase III Transcription by Targeting TBP and Inhibiting Promoter Occupancy by TFIIB." The EMBO Journal, June 2, 2003.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht Diabetes mellitus: A risk factor for early colorectal cancer
27.05.2020 | Nationales Centrum für Tumorerkrankungen (NCT) Heidelberg

nachricht Ultra-thin fibres designed to protect nerves after brain surgery
27.05.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Perfect optics through light scattering

02.06.2020 | Power and Electrical Engineering

The digital construction site: A smarter way of building with mobile robots

02.06.2020 | Architecture and Construction

Process behind the organ-specific elimination of chromosomes in plants unveiled

02.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>