Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Studies show new role for protein in cancer development

27.06.2003


In two groundbreaking papers published in two prestigious journals over the last two months, University of Southern California researchers have provided evidence of two previously unknown functions for a protein that is central to the transcription of genes. Both papers shed light on the role this protein-called TATA-binding protein, or TBP-may play in promoting the development of cancer.



"What we’ve found is that changes in the cellular concentrations of this critical transcription factor cause specific changes in gene expression patterns, which then contribute to cellular transformation, and a cancer cell phenotype," says Deborah Johnson, Ph.D., professor of molecular pharmacology and toxicology at the USC School of Pharmacy and biochemistry and molecular biology in the Keck School of Medicine.

The first paper, published in Molecular and Cell Biology in May, showed that TBP levels are increased by oncogenic proteins like Ras, one of the first genes found to be involved in human cancers. And that increase, Johnson says, has implications for the development of cancer at the cellular level.


In the cellular production of proteins, the information encoded in DNA is transcribed different types of RNA-ribonucleic acid. This process occurs with the help of enzymes called RNA polymerases. There are three RNA polymerases found in a typical cell, and TATA-binding protein has been shown-by Johnson’s lab and others-to be absolutely critical to the function of all of them.

Because TBP is so central and so basic to the process of transcription, Johnson explains, it was long assumed that its cellular levels remain steady at all times. "It was viewed as a housekeeping protein. Nobody even thought that it could be regulated," she said.

When Johnson questioned that assumption and tried manipulating TBP levels in cells, she found that they could indeed be upregulated-and that the proteins that were especially good at increasing TBP levels were proteins like Ras, which are associated with cancer.

Knowing that oncogenic proteins can raise TBP levels in a laboratory dish was one thing; finding out what happens in a living cell when TBP levels rise was another. "That was the next question we asked," Johnson says. "We wanted to know whether TBP was actually driving Ras to transform normal cells into malignant cells."

In a series of experiments and collaborations with a number of researchers from the Keck School of Medicine, Johnson was able to show that when cells are manipulated so that TBP levels can no longer be increased, Ras is no longer able to transform cells.

And when she increased TBP levels without Ras being present, she found that oncogenesis continued unabated. "In fact," notes Johnson, "we tested it in an animal model, and found that increased TBP alone, without Ras, still leads to tumors in nude mice."

Whether TBP plays a similar role in the development of cancer in humans is something that Johnson is now pursuing in collaboration with USC/Norris Cancer Center pathologist Louis Dubeau, M.D., Ph.D., testing tumor cells for their TBP levels. "If TBP is a true contributor to oncogenesis," Johnson says, "we should see increased TBP levels in a clinically relevant proportion of patients." Preliminary data gathered thus far support this hypothesis.

The second study, published in the June issue of The EMBO Journal (EMBO is the European Molecular Biology Organization), looked at the other side of the oncogenesis coin. "We found in the Molecular and Cellular Biology paper that oncogenes like Ras can increase cellular concentrations of TBP," notes Johnson. "If that’s true, then we might expect tumor suppressors to reduce the level of TBP."

To find out if their expectations were correct, Johnson and her colleagues looked at p53, a tumor suppressor that’s found to be mutated in about half of all human cancers. "P53 keeps cells from growing and proliferating out of control," Johnson says.

Like TBP, p53 is also a transcription factor, regulating expression of the genes involved in cell cycle control and apoptosis, the cellular version of suicide. And previous studies have shown that p53 can bind to TBP. But what the biological relevance of that was had gone unreported, until now.

To determine the relevance, Johnson manipulated the levels of p53 in cells, watching to see what happened with TBP in those cells. What she found was that p53 seems to suppress an important function of TBP, preventing it from working with one of the RNA polymerases. "It’s not changing the cellular concentration of TBP," Johnson explains, "but is instead changing its effective concentration, preventing TBP from forming a complex with other proteins. Forming that complex is essential to TBP’s role in transcribing genes."

These two studies, Johnson points out, are really just complementary parts of a larger picture of the role of TBP in oncogenesis. "With these papers," she says, "we now have two very different scenarios that show that increasing the TBP concentration in a cell leads to that cell’s ability to transform into a tumor cell. And in the second scenario, we have a tumor suppressor that decreases the effective concentration of TBP by altering its ability to function. Together, they both contribute to the ability of the cell to transform from normal to malignant."



Sandra A. S. Johnson, Louis Dubeau, Michael Kawalek, Andrew Dervan, Axel H. Schonthal, Chi V. Dang, Deborah Johnson, "Increased Expression of TATA-Binding Protein, the Central Transcription Factor, Can Contribute to Oncogenesis." Molecular and Cellular Biology, May 2003.

Diane Crighton, Annette Woiwode, Cheng Zhang, Nihar Mandavia, Jennifer P. Morton, Lorna J. Warnock, Jo Milner, Robert J. White, Deborah L. Johnson, "p53 Represses RNA Polymerase III Transcription by Targeting TBP and Inhibiting Promoter Occupancy by TFIIB." The EMBO Journal, June 2, 2003.

Jon Weiner | EurekAlert!
Further information:
http://www.usc.edu/

More articles from Health and Medicine:

nachricht Spread of deadly eye cancer halted in cells and animals
13.11.2018 | Johns Hopkins Medicine

nachricht Breakthrough in understanding how deadly pneumococcus avoids immune defenses
13.11.2018 | University of Liverpool

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

NIH scientists illuminate causes of hepatitis b virus-associated acute liver failure

14.11.2018 | Life Sciences

The unintended consequences of dams and reservoirs

14.11.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>