Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ovary gene may explain certain aspects of infertility

26.11.2002


Harvard Medical School researchers have uncovered an ovary gene whose absence from mouse egg cells produced severe pregnancy complications. The gene, Fmn2, which produces the protein formin-2, is similar in mice and humans and offers promise for understanding embryo loss, birth defects, and infertility in women. The study appears in the December Nature Cell Biology.



"As humans we are incredibly bad at producing eggs with the normal number of chromosomes, which is the leading cause of pregnancy loss in women," says Benjamin Leader, an HMS MD/PhD candidate, and the paper’s lead author. "The biological means for ensuring proper distribution of chromosomes to the egg has been difficult to determine.

"Our study shows that the formin-2 gene is required in order to ensure the proper distribution of chromosomes to the egg. About one percent of women suffer from recurrent pregnancy loss, which can be defined as a loss of greater than two or three pregnancies. We are now actively searching for mutations involving the formin-2 gene in women with reproductive loss and infertility," Leader added.


Egg cells lacking Fmn2 were unable to complete the first round of reproductive cell division, known as meiosis I. The egg cell failed to correctly position a significant protein-DNA, the metaphase spindle, thereby halting the division process. The result was lack of formation of the first polar body, a new cell that signifies completion of the first meiotic division, and the daughter egg cell, which would otherwise develop into a mature egg.

Leader observed that Fmn2-deficient female mice produced embryos with three or five sets of chromosomes, a deviation that resulted in cell death. Normal mice with Fmn2 produce embryos with two sets of chromosomes. The researchers also found that healthy ovaries transplanted into Fmn2-deficient females rescued pregnancy loss, whereas transplant of Fmn2-deficient ovaries into healthy females destroyed the healthy females’ ability to produce offspring. Furthermore, examination of the experimental mice revealed a radically reduced number of embryos in Fmn2-deficient females.



This research was supported in part by the Howard Hughes Medical Institute and a Howard Hughes Medical Institute pre-doctoral fellowship grant.

Harvard Medical School has more than 5,000 full-time faculty working in eight academic departments based at the School’s Boston quadrangle or in one of 47 academic departments at 17 affiliated teaching hospitals and research institutes. Those HMS affiliated institutions include Beth Israel Deaconess Medical Center, Brigham and Women’s Hospital, Cambridge Hospital, Center for Blood Research, Children’s Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Joslin Diabetes Center, Judge Baker Children’s Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, Massachusetts Mental Health Center, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital, VA Boston Healthcare System.

Donna Burtanger | EurekAlert!

More articles from Health and Medicine:

nachricht Inselspital: Fewer CT scans needed after cerebral bleeding
20.03.2019 | Universitätsspital Bern

nachricht Building blocks for new medications: the University of Graz is seeking a technology partner
19.03.2019 | Karl-Franzens-Universität Graz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The taming of the light screw

DESY and MPSD scientists create high-order harmonics from solids with controlled polarization states, taking advantage of both crystal symmetry and attosecond electronic dynamics. The newly demonstrated technique might find intriguing applications in petahertz electronics and for spectroscopic studies of novel quantum materials.

The nonlinear process of high-order harmonic generation (HHG) in gases is one of the cornerstones of attosecond science (an attosecond is a billionth of a...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Bacteria may travel thousands of miles through the air globally

25.03.2019 | Life Sciences

Key evidence associating hydrophobicity with effective acid catalysis

25.03.2019 | Life Sciences

Drug diversity in bacteria

25.03.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>