Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Firefly light illuminates course of herpes infection in mice

05.11.2002


Researchers are using a herpes virus that produces a firefly enzyme to illuminate the virus’s course of infection in mice and to help monitor the infection’s response to therapy. The work is published by scientists at Washington University School of Medicine in St. Louis in the December issue of the Journal of Virology.



"This study demonstrates the feasibility of monitoring microbial infections in living animals in real time," says study leader David A. Leib, Ph.D., associate professor of ophthalmology and visual sciences and of molecular microbiology. "The technique enables us to follow an infection over time as it progresses and resolves, and we can do this repeatedly using the same animal."

This technology may solve several problems in studying herpes infections and the genes that control them. To investigate the progress of an infection over a course of days, for example, researchers normally must sacrifice infected mice each day and analyze their tissues to determine the level of virus present. The process is further complicated by the fact that individual mice respond differently to infection.


"One must make a leap of faith that a mouse sacrificed on day three of an infection is responding to the virus in the same way as a mouse sacrificed on day two of the infection," says Leib.

This new technology, an imaging method known as in vivo bioluminescence, enables investigators to track changes in the viral population in the same animal day after day. The device is located in the Molecular Imaging Center at the University’s Mallinckrodt Institute of Radiology.

"This technology can be used to explore questions about this virus that are possible only by studying entire living animals over time," says Gary D. Luker, M.D., an assistant professor of radiology with the Molecular Imaging Center and first author of the paper.

"This is an excellent example of the unique information and new collaborations that are generated when we examine fundamental biological processes with molecular imaging tools," says David Piwnica-Worms, M.D., Ph.D., professor of radiology and of molecular biology and pharmacology and director of the Molecular Imaging Center.

The investigators first added a gene for luciferase, an enzyme produced by fireflies, to a strain of herpes simplex type 1 virus. After determining that the modified virus behaves in cells like the normal virus, they injected the modified virus into several locations in mice, including the brain and abdominal cavity.

Daily for nine days, the mice were injected with luciferin, a compound also produced by fireflies that emits light when exposed to luciferase. They then were anesthetized, placed in a light-free box and photographed using a charged-coupled device, or CCD camera. The camera captures light emitted through the tissues of the mouse by the actively replicating virus. The image produced by the camera shows the location and amount of virus in a mouse as areas of color, ranging from blue (low levels) to red (high levels), superimposed on a photograph of the anesthetized animal. Light produced by the luciferase-luciferin reaction is known as bioluminescence because it is generated by biological chemicals.

This imaging method enabled the investigators to monitor the infection as it spread and receded over nine days. In a second experiment, mice infected with the modified virus were treated with the antiviral drug valacyclovir. The investigators found that decreases in bioluminescence correlated with the decline in the amount of virus present.

The method works in part because bioluminescence produced by fireflies contains a significant amount of red light, which penetrates tissues more effectively than other wavelengths of light. This effect can be seen by shining a flashlight through a finger; it is red light that penetrates the finger.

The investigators next will use the imaging technique to study the course of herpes infection in mice lacking certain elements of the immune system to determine how different elements of the immune system influence the course of an infection.


Luker GD, Bardill JP, Prior JL, Pica CM, Piwnica-Worms D, Leib DA. Noninvasive bioluminescence imaging of Herpes simplex virus type 1 infection and therapy in living mice. Journal of Virology, 76(23), 12149-12161, Dec. 2002.

Funding from the National Institutes of Health, Research to Prevent Blindness and a Robert E. McCormick Scholarship supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://medinfo.wustl.edu/

More articles from Health and Medicine:

nachricht Scientists use nanoparticle-delivered gene therapy to inhibit blinding eye disease in rodents
07.07.2020 | Johns Hopkins Medicine

nachricht Nutrients in microalgae: an environmentally friendly alternative to fish
07.07.2020 | Martin-Luther-Universität Halle-Wittenberg

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

Quick notes in the genome

07.07.2020 | Life Sciences

Limitations of Super-Resolution Microscopy Overcome

07.07.2020 | Life Sciences

Put into the right light - Reproducible and sustainable coupling reactions

07.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>