Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bacterial protein kills tumors

28.10.2002


New weapon in the fight against cancer?



The use of live bacteria to treat cancer goes back a hundred years. But while the therapy can sometimes shrink tumors, the treatment usually leads to toxicity, limiting its value in medicine.

Now, researchers at the University of Illinois at Chicago have isolated a protein secreted by bacteria that kills cancer cells but appears to have no harmful side effects. Tested in mice injected with human melanomas, the protein shrank the malignancies, but, in contrast with other studies using whole bacteria, caused no deaths or adverse reactions in the laboratory animals.


"Bacterial proteins could well be a new weapon in the war against cancer," said Ananda Chakrabarty, distinguished professor of microbiology and immunology and one of the study’s investigators.

Results of the three-year-long study are published in the October 29 issue of the Proceedings of the National Academy of Sciences.

Oddly, the protein the researchers isolated is a well-studied molecule called azurin that is involved in the everyday process cells use to generate energy. This is the first report, however, that azurin is an effective anticancer agent.

The protein was isolated from the growth medium of Pseudomonas aeruginosa, a bacterium that is often resistant to antibiotics and causes serious respiratory infections in people who are particularly susceptible, such as patients with cystic fibrosis or severe burns. The bacterium protects itself from destruction by killing macrophages, the immune system’s first line of attack against a foreign body.

In the UIC study, specially-bred immunodeficient mice implanted with human melanoma were treated with half a milligram of azurin daily for 22 days. At the conclusion of the trial, the average size of the tumors in these mice was 60 percent smaller than those in untreated mice. None of the mice showed signs of illness or loss of weight.

The researchers said that azurin appears to work by stabilizing the p53 protein, a product of the p53 gene, known as a tumor suppressor because it prevents the formation of cancers through a cascade of molecular events that either stops cells from dividing or induces a process called programmed cell death. Normally, the p53 protein is short-lived, surviving just a few minutes in the cell before degrading. But azurin winds its way into the nucleus of the tumor cell, where it binds to the p53 protein and protects it from degradation, thus raising its level within the cell.

According to Dr. Tapas Das Gupta, a co-investigator and head of surgical oncology at UIC, preliminary data show that azurin kills several types of cancer cells, including breast and colon cancer.

"These results suggest that azurin could be a useful anticancer agent not just for melanoma but for different kinds of tumors," Das Gupta said. But he cautioned that extensive studies are needed to confirm the inital laboratory results.

The first observation that bacteria can thwart tumors was made in 1893 by New York physician William Coley, who found that bone cancer patients who contracted bacterial infections survived longer.

Much more recently, researchers at Johns Hopkins University used anaerobic bacteria, bacteria that thrive without oxygen, to destroy the hard cores of tumors. Radiation and chemotherapy are ineffective in these areas because they lack blood and oxygen. In the Hopkins studies, whole "de-fanged" bacteria were used. But although their tumors shrank, a large proportion of the experimental mice died, presumably because of toxins released either by the bacteria or the dying cancer cells.

"Our research suggests we can achieve a therapeutic outcome using bacterial proteins, without the toxicity associated with live bacteria," Chakrabarty said.


Other authors of the study were UIC researchers Tohru Yamada, Masatoshi Goto, Vasu Punj, Olga Zaborina, Mei Ling Chen, Kazuhide Kimbara, Dibyen Majumdar and Elizabeth Cunningham.

The study was supported by grants from the National Institute of Environmental Health Sciences, the National Institute of Allergy and Infectious Diseases and the National Cancer Institute.

Sharon Butler | EurekAlert!
Further information:
http://www.uic.edu

More articles from Health and Medicine:

nachricht A new method of tooth repair? Scientists uncover mechanisms to inform future treatment
09.08.2019 | University of Plymouth

nachricht Take a break! Brain stimulation improves motor learning
08.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>