Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fight against cancer: EU research develops cancer-killing isotopes

26.06.2002


Highly promising results from clinical trials indicate that alpha-emitting radioisotopes can kill cancer cells. The Commission’s Joint Research Centre (JRC) and Deutsches Krebsforschungszentrum presented this innovative therapy during a recent workshop in Heidelberg. Alpha-immunotherapy should develop into an effective treatment over the next few years and provide new methods of healing for patients. How does the cancer-killing mechanism work? A cancer-cell selective vehicle, (e.g. a monocolonal antibody or a peptide) is connected to a powerful radioactive isotope. As it radioactively decays, the isotope emits particles that can either directly or indirectly kill any cancer cells it encounters. Said EU Research Commissioner Philippe Busquin: "More research is needed, but experts tell us that the results from pre-clinical and first clinical trials are promising. Search-and-destroy isotopes should be helpful in fighting a great number of cancers such as leukaemia, lymphoma (haematological malignancies), microscopic, intraperitoneally growing cancers (e.g. ovarian, stomach), glioblastoma and post-operative treatment of glioma, melanomas, colon tumours, myeloma and palliative treatment of malignant ascites. Multi-disciplinary co-operations between Europe’s best teams are needed to advance this innovative approach. Cancer is a key priority in the EU’s next research programme, to be launched later this year."



One of the key targets of the European Commission’s Sixth Framework programme for Research and Development (2003-2006) is "Combating cancer". Altogether just over €1 billion is earmarked for combating major diseases, of which at least € 400 million should go to cancer research. The objective is to develop better strategies, from prevention to diagnosis and treatment, for fighting cancer. EU research will concentrate on translating the new knowledge being created by genomics and other fields of basic research into applications that improve clinical practice and public health.

As far as research on cancer-killing isotopes is concerned, currently only two organisations world-wide are able to produce such isotopes: the European Commission’s Institute for Transuranium Elements (a branch of the JRC) and the Oak Ridge National Laboratories in the US.


Both the recent results obtained in clinical studies, using bismuth-213 to combat acute myeloid leukaemia, and the first evaluations of the direct use of actinium-225, point to the right direction. Whereas the first isotope emits only one alpha particle during its decay, the latter has a decay chain with 4 alpha particles and could be much more efficient, at least when its full potential can be exploited. At the highest dosage level used (up to100 mCi bismuth-213), no acute toxicity was observed. This breakthrough opens the way for accepting the analyses of other alpha-emitters in a clinical setting also.

The Commission has supported pioneering work at the Deutsches Krebsforschungszentrum (DKFZ) and the Kantonspital of Basel, where the first patients were treated for Non-Hodgkin’s lymphoma and glioblastoma respectively. To date, 37 patients in the US have been treated with bismuth 213 or astatine 211 and 11 patients in Europe.

Other very promising studies on treating melanoma using local antibody conjugated bismuth-213 injection foster scientific understanding and several hypotheses on the operating mechanisms of alpha-damage can therefore be validated. As the use of highly radiotoxic alpha-emitting isotopes is not currently common practice in hospitals, strict requirements need to be respected to allow the large-scale application of this technology.

State-of-the art genomics and proteomics are expected to provide a sound understanding of the governing processes in the application of alpha-emitters and other radioactive isotopes. Such details will help not only in combating cancer, but also in understanding how low-level radiation exposure effects the human genetic makeup. The hope is to produce a patient-tailored drug and/or therapy design in the future, through studying the specific features of particular diseases and their genetic expression.

Fabio Fabbi | Europäische Kommission
Further information:
http://itu.jrc.cec.eu.int/

More articles from Health and Medicine:

nachricht Unique brain 'fingerprint' can predict drug effectiveness
11.07.2018 | McGill University

nachricht Direct conversion of non-neuronal cells into nerve cells
03.07.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>