Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Beyond copolymer 1

12.06.2002


Copolymer 1, also called glatiramer acetate, is an unusual therapeutic compound, a heterogeneous mix of polypeptides containing the four amino acids Y, E, A, and K in definite ratios but with no uniform sequence. Although its mode of action remains controversial, this preparation clearly helps retard the progression of human multiple sclerosis (MS) and of the related autoimmune condition, studied in mice, experimental autoimmune encephalomyelitis (EAE). Copolymer 1 is presented on class II MHC molecules, including the HLA-DR2 type that is associated with increased risk of MS. This MHC molecule binds a defined auto-epitope from myelin basic protein (MBP) and presents it to CD4 T cells, initiating an immune response against myelin in the CNS. Fridkis-Hareli et al. reexamined the structure of the DR2 peptide-binding groove and concluded that the selection of amino acids used in Copolymer 1 was far from optimal if the goal was to compete against presentation of MBP peptides. Here they show that YFAK and FAK copolymers, among others, bind DR2 with higher affinity than does YEAK (copolymer 1), allowing them to compete successfully against an endogenous autoantigenic peptide. These formulations were more effective than Copolymer 1 at suppressing the activation of T cells bearing DR2-restricted, MS patient?derived T cell receptors. Crucially, the novel copolymers were also dramatically more effective at suppressing EAE. Thus, mice injected with either a defined antigenic peptide or whole spinal cord homogenate normally initiate inflammatory and cytolytic responses in the CNS. While Copolymer 1 reduced the incidence of this disease and delayed its onset in most cases, several of the novel copolymers prevented it entirely. Given the precedent of Copolymer 1?s safety and efficacy in people with MS, the use of other copolymers, perhaps optimized to target an individual?s MHC haplotype, seems an attractive scenario for MS and perhaps other autoimmune diseases.



John Ashkenas | EurekAlert

More articles from Health and Medicine:

nachricht When added to gene therapy, plant-based compound may enable faster, more effective treatments
18.10.2019 | Scripps Research Institute

nachricht Diabetes: A next-generation therapy soon available?
17.10.2019 | Université de Genève

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Energy Flow in the Nano Range

18.10.2019 | Power and Electrical Engineering

MR-compatible Ultrasound System for the Therapeutic Application of Ultrasound

18.10.2019 | Medical Engineering

Double layer of graphene helps to control spin currents

18.10.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>