In Evolution Game, Survival Doesn’t Equal Success

Finding has implications for future of biodiversity

A significant number of organisms that survived the five greatest mass extinctions in Earth’s history subsequently failed to achieve evolutionary success, according to a new study funded by the National Science Foundation (NSF) and conducted by University of Chicago scientist David Jablonski.

“It’s clear that there is a lot of evolutionary action in the aftermath of mass extinctions,” said Jablonski. “During the rebound from mass extinctions, it’s not an all-or-nothing thing. The shape of the post-extinction world comes not only from who goes extinct, but from which survivors are successful – or, instead, become extinct or marginalized in the aftermath.”

Jablonski lays out his evidence in the June 11 issue of the journal, Proceedings of the National Academy of Sciences. The research was also supported by the Guggenheim Foundation.

“Because most extinction event survivor organisms rebound so robustly, paleontological studies are generally focused on these evolutionary winners,” explains Richard Lane, director of NSF’s paleontology program. “Jablonski’s research examines why other groups of organisms weakly struggle through these major catastrophic events only to meet their demise somewhat later, geologically speaking.”

To test the idea that many survivors go on to lose the evolutionary game, Jablonski turned to the paleontological literature and to his own work on the aftermath of mass extinction at the end of the Mesozoic Era. In a global analysis of marine genera, he determined how many lineages survived each of the largest mass extinctions in Earth’s history only to die off within the first five or 10 million years thereafter.

Patterns at higher levels of biological organization – for example, orders that include a large number of genera – often play out differently. However, Jablonski also found a 17 percent extinction rate for orders following three of the five big mass extinctions.

This result surprised Jablonski, who had assumed that survival of a mass extinction would be good news for most major groups. “It wasn’t good news for everybody, even at this level,” he said.

These sets of doomed survivors are the last representatives of their clades, a technical term for an evolutionary group of organisms that includes an ancestor and all of its descendants. Jablonski creates a special category for them in his article, calling them “Dead Clade Walking,” in homage to the 1995 film “Dead Man Walking,” about a death-row inmate.

Paleontologists still poorly understand the process that sorts the winners from the losers after a major extinction, Jablonski said. His statistical analysis ruled out one of the most straightforward of possible causes – that lineages that have suffered a major blow to their numbers during a mass extinction might be especially extinction-prone in the aftermath because they contain fewer species to buffer against the hard times. Instead, Jablonski found that many of the biggest post-extinction winners had passed through a diversity bottleneck as narrow as the Dead Clade Walking groups.

Other possible causes include environmental change and increased competition between species. Both issues need further study, Jablonksi said, and there are probably examples of each in the fossil record.

Media Contact

Cheryl Dybas National Science Foundation

Alle Nachrichten aus der Kategorie: Life Sciences

Articles and reports from the Life Sciences area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Detecting early-stage failure in electric power conversion devices

Researchers from Osaka University use non-destructive acoustic monitoring to identify the earliest stages of failure in silicon carbide power electronics, which will help in the design of more-durable power devices….

Build your own AI with ISAAC for error detection in production

Fraunhofer IDMT has developed a software tool for quality inspectors based on Artificial Intelligence (AI), which automates and simplifies the analysis of industrial sounds, for example in welding processes. Thanks…

BEAT-COVID – advanced therapy strategies against the pandemic

The present SARS-coronavirus-2 pandemic with all its effects on society – both health and economic – highlights the urgency of developing new therapies for COVID-19 treatment. At the same time,…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close