Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU College of Nursing Researchers Find a New Solution in Detecting Breast-Cancer Related Lymphedema

13.11.2013
Findings suggest affective reliable and accurate measurement of Lymphedema may help ease breast-cancer survivors fears

Viewed as one of the most feared outcomes of breast cancer treatment, doctors struggle detecting and diagnosing breast-cancer related Lymphedema--a condition affecting the lymphatic system and causing psychosocial distress and physical challenges for patients.

Now, a team of researchers led by Mei R. Fu, PhD, RN, ACNS-BC, associate professor of Chronic Disease Management at the New York University College of Nursing (NYUCN), offers supporting evidence for using Bioelectrical Impedance Analysis (BIA) ratios to assess Lymphedema.

The study, “L-DEX Ratio in Detecting Breast Cancer-Related Lymphedema: Reliability, Sensitivity, and Specificity,” published in Lymphology, argues because the low frequency electronic current cannot travel through cell membranes, it provides a direct measure of lymph fluid outside the cells. This allows for a more accurate assessment of lymphedema using a Lymphedema Index named L-Dex ratio.

“To lessen breast cancer survivors’ worry about lymphedema development, the BIA may have a role in clinical practice by adding confidence in the detection of arm lymphedema among breast cancer survivors,” says Dr. Fu, “even when pre-surgical BIA baseline measures are not available.”

The objective of the study was to examine the reliability, sensitivity, and specificity of cross-sectional assessment of BIA in detecting lymphedema in a large metropolitan clinical setting.

Measuring lymphedema is challenging because most methods cannot distinguish bone and soft tissues from extracellular fluid. BIA is time-efficient, easy to operate and easy to interpret, making it ideal for clinical practice. Dr. Fu’s research collected data from 250 women, including healthy female adults, breast cancer survivors with lymphedema, and those at risk for lymphedema, demonstrating that survivors with lymphedema had significantly higher L-Dex ratios, which shows the possibility of using BIA to discriminate between those cohorts of women.

“Our study also demonstrated that using a more sensitive L-Dex cutoff point, this allowed for BIA to catch 34% of the usually missed lymphedema cases,” said Dr. Fu. “This allows for earlier treatment, which naturally leads to better outcomes for at-risk patients.”

The American Cancer society estimates that in 2013 approximately 232,340 new cases of breast cancer are detected, adding to the already 2.9 million breast cancer survivors, all with a at a lifetime risk of Lymphedema.

“Giving that all the women who are treated for breast cancer are at a life-time risk for lymphedema, using assessment methods that can accurately identify true lymphedema cases among at-risk breast cancer survivors is of the ultimate importance for clinical practice,” added Dr. Fu.

This study was supported by the Avon Foundation and the National Institute of Health. NINR project# 1R21NR012288-01A and NIMHD project# P60 MD000538-03.

The research team members are: M.R. Fu, C.M. Cleland, A.A. Guth, M. Kayal, J. Haber, F. Cartwright, R. Kleinman, Y. Kang, J. Scagliola, D. Axelrod   Affiliations:  College of Nursing (MRF,CMC,JH), New York University; Department of Surgery (AAG,DA), New York University School of Medicine, New York, ISA; NYU Clinical Cancer Center (AAG,RK,JS,DA); Department of Nursing and Oncology Services (FC), NYU Langone Medical Center, New York, USA; Departments of Medicine (MK) and Statistics (YK), Columbia University, New York, NY USA

About New York University College of Nursing
NYU College of Nursing is a global leader in nursing education, research, and practice. It offers a Bachelor of Science in Nursing, a Master of Arts and Post-Master’s Certificate Programs, a Doctor of Philosophy in Research Theory and Development, and a Doctor of Nursing Practice degree.  For more information, visit www.nyu.edu/nursing.

This Press Release is in the following Topics:
Research, College of Nursing, Research News, Sponsored Research
Type: Press Release
Press Contact: Christopher James | (212) 998-6876

Christopher James | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Health and Medicine:

nachricht UC San Diego researchers develop sensors to detect and measure cancer's ability to spread
06.12.2018 | University of California - San Diego

nachricht New cancer immunotherapy approach turns immune cells into tiny anti-tumor drug factories
05.12.2018 | University of California - San Diego

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>