Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

High-fat diet impairs muscle health before impacting function

07.10.2009
Skeletal muscle plays a critical role in regulating blood sugar levels in the body. But few studies have comprehensively examined how obesity caused by a high-fat diet affects the health of muscle in adolescents who are pre-diabetic.

In a paper published tomorrow in the scientific journal PLoS One, a team of McMaster University researchers report that the health of young adult muscle declines during the pre-diabetic state, which is when blood sugar levels are higher than normal but lower than during Type 2 diabetes. The researchers found that during this period significant impairments occur in the muscle, even though it appears to be functioning normally.

"Based on the way the muscles performed, you would think that they're still healthy," said Thomas Hawke, an associate professor of pathology and molecular medicine of the Michael G. DeGroote School of Medicine at McMaster University. "But the fact is the muscle is not healthy. It's undergone a lot of pathological changes."

Hawke led a team of researchers at McMaster and York universities in using mice to examine how a high-fat diet, leading to obesity, affected the form and function of skeletal muscle. The researchers found the high-fat diet resulted in insulin resistance, large increases in fat mass and weight gain. But it also led to initial adaptations in the muscle.

"What our results tell us is that, initially, skeletal muscle appears to respond positively to the high-fat diet. By changing the size or type of its muscle fibres, the muscle adapts to the high-fat diet by saying 'Let's burn more of this fuel,' " Hawke said.

"But with continued high-fat feeding, we're giving the muscle more fuel than it can handle. So, even though it has made these initial, positive changes, continued high-fat feeding is more than the muscle can cope with. That's when a downward spiral starts."

The researchers also discovered that not all muscles responded in the same way to obesity. Some adapted by changing their fibre type, while others altered the size of their fibres. But, in all cases analyzed, a high-fat diet decreased the ability of skeletal muscle to use fat or glucose as fuel.

When the researchers looked at function, and examined the maximum effort the muscles could generate, they discovered no difference between the high-fat diet group and the control group which was eating a diet significantly lower in fat. However, if the muscles were fatigued and then were required to work, the high-fat diet group didn't recover as quickly as the control group.

"What this suggests is that the muscle is trying to maintain function despite all the negative changes that have resulted," Hawke said. "When we stress the muscle a bit though, such as fatiguing it, there are some hints toward functional impairment, but overall the muscle has coped well, functionally anyways."

The authors concluded that early therapeutic interventions in obese, pre-diabetic youth are needed prior to significant long-term effects on the growth and function of their muscles.

In Canada, 2.4 million people are living with diabetes and up to six million more have pre-diabetes, according to the Canadian Diabetes Association. If left untreated, approximately 25 per cent of people with pre-diabetes will progress to diabetes within three to five years.

Veronica McGuire | EurekAlert!
Further information:
http://www.mcmaster.ca

Further reports about: McMaster fibre type high-fat diet pre-diabetic skeletal muscle

More articles from Health and Medicine:

nachricht The FiTS app now offering cooking videos as it expands its concept for long-term behavior modification
18.09.2018 | vitaliberty GmbH

nachricht The microbiota in the intestines fuels tumour growth
18.09.2018 | Technische Universität München

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: New soft coral species discovered in Panama

A study in the journal Bulletin of Marine Science describes a new, blood-red species of octocoral found in Panama. The species in the genus Thesea was discovered in the threatened low-light reef environment on Hannibal Bank, 60 kilometers off mainland Pacific Panama, by researchers at the Smithsonian Tropical Research Institute in Panama (STRI) and the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR) at the University of Costa Rica.

Scientists established the new species, Thesea dalioi, by comparing its physical traits, such as branch thickness and the bright red colony color, with the...

Im Focus: New devices based on rust could reduce excess heat in computers

Physicists explore long-distance information transmission in antiferromagnetic iron oxide

Scientists have succeeded in observing the first long-distance transfer of information in a magnetic group of materials known as antiferromagnets.

Im Focus: Finding Nemo's genes

An international team of researchers has mapped Nemo's genome

An international team of researchers has mapped Nemo's genome, providing the research community with an invaluable resource to decode the response of fish to...

Im Focus: Graphene enables clock rates in the terahertz range

Graphene is considered a promising candidate for the nanoelectronics of the future. In theory, it should allow clock rates up to a thousand times faster than today’s silicon-based electronics. Scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) and the University of Duisburg-Essen (UDE), in cooperation with the Max Planck Institute for Polymer Research (MPI-P), have now shown for the first time that graphene can actually convert electronic signals with frequencies in the gigahertz range – which correspond to today’s clock rates – extremely efficiently into signals with several times higher frequency. The researchers present their results in the scientific journal “Nature”.

Graphene – an ultrathin material consisting of a single layer of interlinked carbon atoms – is considered a promising candidate for the nanoelectronics of the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

One of the world’s most prominent strategic forums for global health held in Berlin in October 2018

03.09.2018 | Event News

4th Intelligent Materials - European Symposium on Intelligent Materials

27.08.2018 | Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

 
Latest News

World's first passive anti-frosting surface fights ice with ice

18.09.2018 | Materials Sciences

A novel approach of improving battery performance

18.09.2018 | Materials Sciences

Scientists use artificial neural networks to predict new stable materials

18.09.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>