Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain Implant Surgeries at UCSF Dramatically Improve Symptoms of Debilitating Condition

09.03.2011
Implanting electrodes into a pea-sized part of the brain can dramatically improve life for people with severe cervical dystonia – a rare but extremely debilitating condition that causes painful, twisting neck muscle spasms – according to the results of a pilot study led by Jill Ostrem, MD and Philip Starr, MD PhD at the University of California, San Francisco.

Today, people with cervical dystonia can be treated with medications or injections of botulinum toxin (e.g., Botox®), which interrupt signals from the brain that cause these spasms. However, those treatments do not provide adequate relief for all patients.

Over the last decade, doctors at UCSF and elsewhere have turned to a technique called deep brain stimulation to help people with debilitating dystonia. Also used to treat Parkinson’s disease and the neurological disorder essential tremor, the technique is like putting a pacemaker inside a heart patient’s chest – except that deep brain stimulation requires a neurosurgeon to implant electrodes inside the brain.

Scientists are not sure exactly why deep brain stimulation works. The electrodes deliver electric current to tiny parts of the brain, likely altering abnormal brain circuitry and alleviating symptoms by overriding the signals coming from those parts of the brain.

Traditionally doctors have treated cervical dystonia with deep brain stimulation by targeting a brain nucleus known as the “globus pallidus internus.” Reporting this week in the journal Neurology, the UCSF team described the results of the first detailed clinical study looking at deep brain stimulation targeting a completely different part of the brain: the "subthalamic nucleus."

“This target is very widely used for Parkinson’s disease but not widely used for dystonia,” said Starr, a professor of neurological surgery at UCSF and senior author of the paper.

The study, led by Ostrem, an associate professor of neurology at UCSF, involved nine patients followed for one year after surgery. “Patients in this study had failed medical treatments, but with the surgery, they were able to improve their movements and quality of life – as well as overcome some of their disability and pain,” said Ostrem.

Video analysis and standard measures of dystonia showed the surgeries lowered pain, reduced spasms and improved the overall quality of life without causing serious side effects.

The team is now planning to enroll more patients into a longer study following outcomes for three years post-surgery.

“Medications and botulinum toxin injections still remain the first line of treatment,” Ostrem said, “but for those who are really still suffering, we think DBS using this new stimulation location offers another choice for them.”

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care.

Jason Socrates Bardi | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Health and Medicine:

nachricht Purdue cancer identity technology makes it easier to find a tumor's 'address'
16.11.2018 | Purdue University

nachricht Microgel powder fights infection and helps wounds heal
14.11.2018 | Michigan Technological University

All articles from Health and Medicine >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>