Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Ulster Spin-out Unveils Breakthrough Vital Sign Monitors

24.06.2008
Innovative medical technology developed by a University of Ulster spinout company is set to transform the way doctors monitor their patients’ hearts and other vital signs, it was revealed today.

A tiny device invented by spinout company ST+D will enable clinicians to assess a patient’s condition irrespective of where they are. The “no wires” technology will also help to reduce patients’ time in hospital and free up beds more quickly.

“It won’t matter whether the patient is in hospital, at home recuperating - or holidaying in, say, Spain or South Africa,” according to chief executive Michael Caulfield. “Doctors will be able to click onto a website and review the state of their patients’ health.”

The breakthrough is based on a disposable adhesive electrode patch worn on the patient’s chest. A small electronic unit with wireless technology is attached which sends processed signals back to the doctor.

The company has revealed that a specific version of the device is now being developed by ST+D and clinically trialled in collaboration with the Royal Victoria Hospital in a project which has been funded by the Wellcome Trust, the UK’s largest medical research charity. This programme-related investment by the Trust is the first of its kind for a private sector business in Northern Ireland.

The device is the outcome of pioneering research by the principal investigators Professors John Anderson, Jim McLaughlin and Eric McAdams at the University of Ulster’s Nanotechnology and Integrated Bioengineering Centre (NIBEC) who are founders and directors of ST+D. It is hoped that following the product development phase its manufacture will take place in Belfast, leading to new jobs at the award-winning Northern Ireland firm.

Ted Bianco, Director of Technology Transfer at the Wellcome Trust, said: “Our translation awards are designed to facilitate the development of medical products in areas of unmet need in healthcare. In this way, the Wellcome Trust aims to bridge the gap between a good idea and an innovative tool with the potential to improve the lives of patients.”

“This device certainly has the potential to change the way doctors monitor their patients’ hearts. Testing it in a hospital environment is the first step to validating the technology and gaining useful insights into how it might best be deployed, both in the clinical setting and beyond.”

The 18-month roll-out period is attracting international attention, according to Michael Caulfield, whose company specialising in wireless “vital signs” medical technology is based at Heron Road in Belfast.

“It will free up hospital beds because of earlier release of heart patients and cut down on in-patients’ appointments, while at the same time giving early warning of any problems,” he added. “While it’s not designed to provide emergency alerts this technology will certainly warn the clinician of one that may possibly be impending – and of which the patient is unaware. This technology solution will be of significant interest to healthcare organisations on a global basis”

The sensor includes on-board intelligence allowing it to monitor and record irregular heart events and to capture heart data for periods of time before and after those events. Future versions of the device will also measure the wearer’s respiratory rate, temperature and oxygen in the blood.

Within a hospital environment, this device will work from up to 10 metres away, un-tethering the patient from wires. When patients are discharged the clinician will have the option to provide the patient with a small handset suitable for bedside table, pocket or handbag which will pick up the signals from the patch using GPRS, (the global system for mobile communications) and transmit the signals onwards to a doctor's computer via the world-wide web.

David Young | alfa
Further information:
http://www.ulster.ac.uk

More articles from Medical Engineering:

nachricht Implantable transmitter provides wireless option for biomedical devices
04.08.2020 | Purdue University

nachricht Certainty in just 15 minutes – researchers develop a graphene oxid based rapid test to detect infections
03.08.2020 | Fraunhofer-Institut für Zuverlässigkeit und Mikrointegration IZM

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>