Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Ulster Spin-out Unveils Breakthrough Vital Sign Monitors

24.06.2008
Innovative medical technology developed by a University of Ulster spinout company is set to transform the way doctors monitor their patients’ hearts and other vital signs, it was revealed today.

A tiny device invented by spinout company ST+D will enable clinicians to assess a patient’s condition irrespective of where they are. The “no wires” technology will also help to reduce patients’ time in hospital and free up beds more quickly.

“It won’t matter whether the patient is in hospital, at home recuperating - or holidaying in, say, Spain or South Africa,” according to chief executive Michael Caulfield. “Doctors will be able to click onto a website and review the state of their patients’ health.”

The breakthrough is based on a disposable adhesive electrode patch worn on the patient’s chest. A small electronic unit with wireless technology is attached which sends processed signals back to the doctor.

The company has revealed that a specific version of the device is now being developed by ST+D and clinically trialled in collaboration with the Royal Victoria Hospital in a project which has been funded by the Wellcome Trust, the UK’s largest medical research charity. This programme-related investment by the Trust is the first of its kind for a private sector business in Northern Ireland.

The device is the outcome of pioneering research by the principal investigators Professors John Anderson, Jim McLaughlin and Eric McAdams at the University of Ulster’s Nanotechnology and Integrated Bioengineering Centre (NIBEC) who are founders and directors of ST+D. It is hoped that following the product development phase its manufacture will take place in Belfast, leading to new jobs at the award-winning Northern Ireland firm.

Ted Bianco, Director of Technology Transfer at the Wellcome Trust, said: “Our translation awards are designed to facilitate the development of medical products in areas of unmet need in healthcare. In this way, the Wellcome Trust aims to bridge the gap between a good idea and an innovative tool with the potential to improve the lives of patients.”

“This device certainly has the potential to change the way doctors monitor their patients’ hearts. Testing it in a hospital environment is the first step to validating the technology and gaining useful insights into how it might best be deployed, both in the clinical setting and beyond.”

The 18-month roll-out period is attracting international attention, according to Michael Caulfield, whose company specialising in wireless “vital signs” medical technology is based at Heron Road in Belfast.

“It will free up hospital beds because of earlier release of heart patients and cut down on in-patients’ appointments, while at the same time giving early warning of any problems,” he added. “While it’s not designed to provide emergency alerts this technology will certainly warn the clinician of one that may possibly be impending – and of which the patient is unaware. This technology solution will be of significant interest to healthcare organisations on a global basis”

The sensor includes on-board intelligence allowing it to monitor and record irregular heart events and to capture heart data for periods of time before and after those events. Future versions of the device will also measure the wearer’s respiratory rate, temperature and oxygen in the blood.

Within a hospital environment, this device will work from up to 10 metres away, un-tethering the patient from wires. When patients are discharged the clinician will have the option to provide the patient with a small handset suitable for bedside table, pocket or handbag which will pick up the signals from the patch using GPRS, (the global system for mobile communications) and transmit the signals onwards to a doctor's computer via the world-wide web.

David Young | alfa
Further information:
http://www.ulster.ac.uk

More articles from Medical Engineering:

nachricht Faster detection of atrial fibrillation thanks to smartwatch
18.03.2019 | Universität Greifswald

nachricht A peek into lymph nodes
15.03.2019 | Tohoku University

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>