Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Ulster Spin-out Unveils Breakthrough Vital Sign Monitors

24.06.2008
Innovative medical technology developed by a University of Ulster spinout company is set to transform the way doctors monitor their patients’ hearts and other vital signs, it was revealed today.

A tiny device invented by spinout company ST+D will enable clinicians to assess a patient’s condition irrespective of where they are. The “no wires” technology will also help to reduce patients’ time in hospital and free up beds more quickly.

“It won’t matter whether the patient is in hospital, at home recuperating - or holidaying in, say, Spain or South Africa,” according to chief executive Michael Caulfield. “Doctors will be able to click onto a website and review the state of their patients’ health.”

The breakthrough is based on a disposable adhesive electrode patch worn on the patient’s chest. A small electronic unit with wireless technology is attached which sends processed signals back to the doctor.

The company has revealed that a specific version of the device is now being developed by ST+D and clinically trialled in collaboration with the Royal Victoria Hospital in a project which has been funded by the Wellcome Trust, the UK’s largest medical research charity. This programme-related investment by the Trust is the first of its kind for a private sector business in Northern Ireland.

The device is the outcome of pioneering research by the principal investigators Professors John Anderson, Jim McLaughlin and Eric McAdams at the University of Ulster’s Nanotechnology and Integrated Bioengineering Centre (NIBEC) who are founders and directors of ST+D. It is hoped that following the product development phase its manufacture will take place in Belfast, leading to new jobs at the award-winning Northern Ireland firm.

Ted Bianco, Director of Technology Transfer at the Wellcome Trust, said: “Our translation awards are designed to facilitate the development of medical products in areas of unmet need in healthcare. In this way, the Wellcome Trust aims to bridge the gap between a good idea and an innovative tool with the potential to improve the lives of patients.”

“This device certainly has the potential to change the way doctors monitor their patients’ hearts. Testing it in a hospital environment is the first step to validating the technology and gaining useful insights into how it might best be deployed, both in the clinical setting and beyond.”

The 18-month roll-out period is attracting international attention, according to Michael Caulfield, whose company specialising in wireless “vital signs” medical technology is based at Heron Road in Belfast.

“It will free up hospital beds because of earlier release of heart patients and cut down on in-patients’ appointments, while at the same time giving early warning of any problems,” he added. “While it’s not designed to provide emergency alerts this technology will certainly warn the clinician of one that may possibly be impending – and of which the patient is unaware. This technology solution will be of significant interest to healthcare organisations on a global basis”

The sensor includes on-board intelligence allowing it to monitor and record irregular heart events and to capture heart data for periods of time before and after those events. Future versions of the device will also measure the wearer’s respiratory rate, temperature and oxygen in the blood.

Within a hospital environment, this device will work from up to 10 metres away, un-tethering the patient from wires. When patients are discharged the clinician will have the option to provide the patient with a small handset suitable for bedside table, pocket or handbag which will pick up the signals from the patch using GPRS, (the global system for mobile communications) and transmit the signals onwards to a doctor's computer via the world-wide web.

David Young | alfa
Further information:
http://www.ulster.ac.uk

More articles from Medical Engineering:

nachricht Hybrid microscope could bring digital biopsy to the clinic
13.02.2020 | University of Illinois at Urbana-Champaign, News Bureau

nachricht World’s first Parkinson’s patient treated with unique Deep Brain Stimulation device
06.02.2020 | Klinikum der Universität München

All articles from Medical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Gold nanoclusters: new frontier for developing medication for treatment of Alzheimer's disease

17.02.2020 | Life Sciences

Artificial intelligence is becoming sustainable!

17.02.2020 | Information Technology

Catalyst deposition on fragile chips

17.02.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>