VCU researchers identify changes in cholesterol metabolic pathways

It is estimated that a third of Americans have a fatty liver. Nonalcoholic fatty liver disease is a very common liver condition. Nonalcoholic steatohepatitis, or NASH, the more aggressive form of nonalcoholic fatty liver disease, is associated with increased cardiac risk and liver-related mortality.

The VCU findings may provide researchers with potential new targets for treatment and also allow clinicians to further refine how they assess cardiovascular risk and develop ways to reduce it in individuals with a more aggressive form of nonalcoholic fatty liver disease called nonalcoholic steatohepatitis, or NASH.

In the study, published in the May issue of Cell Metabolism, the team has shown that there is not only increased production of cholesterol but a decreased expression of the receptor that takes up cholesterol from the blood. This would be expected to both enhance cholesterol output from the liver and reduce its removal, thereby making it more available to enter blood vessels and contribute to cardiovascular disease. The liver not only makes cholesterol, but also takes up cholesterol from the blood.

“This indicates that there is excessive cholesterol production in the liver when one develops fatty liver disease,” said lead investigator Arun Sanyal, M.D., professor and chair in the Division of Gastroenterology, Hepatology and Nutrition in the VCU School of Medicine.

“This may be important both to drive the disease towards cirrhosis and to increase the risks of heart disease in those with fatty liver disease,” said Sanyal.

Sanyal collaborated with VCU colleagues in the VCU Division of Gastroenterology, Hepatology and Nutrition, the Department of Surgery and the Department of Pathology.

The work was supported in part by grants from the National Institutes of Health, grant numbers: 5R01DK081410-03, K24 DK 02755 and T32 DK-007150-33.

EDITOR'S NOTE: A copy of the study is available for reporters by contacting the journal at press@cell.com.

About VCU and the VCU Medical Center: Virginia Commonwealth University is a major, urban public research university with national and international rankings in sponsored research. Located in downtown Richmond, VCU enrolls more than 31,000 students in 222 degree and certificate programs in the arts, sciences and humanities. Sixty-six of the programs are unique in Virginia, many of them crossing the disciplines of VCU's 13 schools and one college. MCV Hospitals and the health sciences schools of Virginia Commonwealth University compose the VCU Medical Center, one of the nation's leading academic medical centers. For more, see www.vcu.edu.

Media Contact

Sathya Achia Abraham EurekAlert!

More Information:

http://www.vcu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors