Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vascular marker of ovarian cancer identified

24.09.2008
Researchers have identified TEM1 as a specific genetic marker for the vascular cells associated with tumor growth, a finding that could aid in diagnosis and treatment of ovarian cancer.

"The laboratory of Dr. George Coukos is developing novel treatments for ovarian cancer which target the vasculature surrounding the tumor, thereby disrupting the blood supply needed for the tumor to grow," said Chunsheng Li, Ph.D., a post-doctoral research fellow at the University of Pennsylvania Ovarian Cancer Research Center.

Li presented his findings at the American Association for Cancer Research Molecular Diagnostics in Cancer Therapeutic Development meeting being held here September 22-25, 2008.

Ovarian cancer is the deadliest gynecologic cancer in the United States, largely due to the fact that there are no reliable methods for detecting ovarian cancer at an early stage, when cure is still possible. Li and colleagues found that high levels of TEM1 were correlated with decreased survival of ovarian cancer patients. Furthermore, all 52 samples of ovarian cancer examined were positive for TEM1 in the vasculature, while none of the control samples tested positive. This suggests that TEM1 is a specific marker for ovarian cancer, which may lead to a potential screening tool.

Li and colleagues have been addressing TEM1's diagnostic value both in vitro and in vivo. In vitro, they used polymerase chain reaction and immunohistochemistry analyses to determine the relative levels of human TEM1 expression in ovarian cancer versus healthy human samples, and in vivo they developed PET imaging studies. Li's preliminary in vivo experiments with a new mouse model implanted with tumor vasculature that expresses human TEM1, demonstrated by PET imaging that a novel anti-TEM1 radiolabel probe could specifically detect a small number of TEM1-expresser cells.

Li said the specific expression of TEM1 by ovarian cancer tumor vasculature, is linked to poor prognosis and the development of new tools able to detect a small number of TEM1-expresser cells in vivo, will allow clinicians to more effectively target the tumor vasculature for diagnostic purposes as well as for treatments that could help halt the disease.

"This will have to be borne out in further studies, but if we can normalize the vasculature surrounding the tumor, we will have a better chance of eradicating the tumor," said Li.

Jeremy Moore | EurekAlert!
Further information:
http://www.aacr.org

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>