Genetic Disorder Gives Clues to Autism, Epilepsy, Mental Retardation

A rare genetic disorder called tuberous sclerosis complex (TSC) is yielding insight into a possible cause of some neurodevelopmental disorders: structural abnormalities in neurons, or brain cells. Researchers in the F.M. Kirby Neurobiology Center at Children’s Hospital Boston, led by Mustafa Sahin, MD, PhD, and Xi He, PhD, also found that normal neuronal structure can potentially be restored.

If this could be done safely in humans, it might be possible to ameliorate the symptoms of epilepsy, mental retardation and autism, which are frequent complications of TSC, say the researchers. Their findings, accompanied by commentary, were the cover article of the September 15 issue of Genes & Development.

TSC causes benign tumor-like lesions, which can affect every organ in the body and are called tubers when they occur in the brain. In the study, Sahin, He, lead author Yong-Jin Choi, PhD, and colleagues show in mice that when the two genes linked to the disease, TSC1 and TSC2, are inactivated, neurons grow too many axons (the long nerve fibers that transmit signals). Normal neurons grow just one axon and multiple dendrites (short projections that receive input from other neurons). This specification of axons and dendrites, known as polarity, is crucial for proper information flow.

“We think if initial polarity is not formed properly, the result will be abnormal connectivity in the brain,” says Sahin, who also directs the clinical Multi-Disciplinary Tuberous Sclerosis program at Children’s.

Since autism occurs in about half of people with TSC, the findings support the idea that such miswiring causes or contributes to autism, Sahin adds. He has received funding from Autism Speaks, the Manton Foundation and the Tuberous Sclerosis Alliance to pursue this idea further.

“People have started to look at autism as a developmental disconnection syndrome – there are either too many connections or too few connections between different parts of the brain,” Sahin says. “In mouse models of TSC, we’re seeing an exuberance of connections.”

In laboratory experiments, the researchers were able to limit multiple axon formation by using the cancer drug rapamycin to suppress production of a protein called SAD-A kinase. This protein is produced in excess when the TSC1 and TSC2 genes are inactivated, and is found in abundance in the abnormally large cells that make up tubers.

Because increased SAD-A is associated with increased axon growth, the researchers also speculate that the TSC pathway could be manipulated to regenerate or repair axons lost or damaged in spinal cord or other nerve injuries.

“These findings provide a potential explanation for neurological abnormalities in TSC patients and perhaps in people without TSC,” says He. “The challenge remains as to how to treat these conditions. We have some clues but a lot more research needs to be done.”

The study was funded by grants from the Tuberous Sclerosis Alliance, the Manton Foundation, the Hearst Fund and the National Institutes of Health.

The paper can be downloaded free of charge at: http://genesdev.cshlp.org/cgi/content/abstract/22/18/2485?ijkey=949b2a5281a96ef468052b08e52e9cab65db1470&keytype2=tf_ipsecsha.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 500 scientists, including eight members of the National Academy of Sciences, 11 members of the Institute of Medicine and 12 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 397-bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School.

Media Contact

James Newton Newswise Science News

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Nanofiber-hydrogel loaded with stem cells shows success

… treating severe complication of Crohn’s disease. Johns Hopkins researchers develop injectable biomimetic hydrogel composite that promotes regenerative healing in an animal model of Crohn’s perianal fistulas. In a new…

World-class center for single crystal electron diffraction will be UK first

New electron diffraction equipment is about to revolutionize how we understand crystal structures. A new centre based jointly at the University of Southampton and the University of Warwick will draw…

Research challenges “sugar hypothesis” of diabetic cataract development

In preclinical models, investigators uncovered a novel mechanism underlying the development of diabetic cataracts that undermines current hypothesis. New findings from investigators at Brigham and Women’s Hospital, a founding member…

Partners & Sponsors