Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Up, up and away: USU chemists say 'yes,' helium can form compounds

07.02.2017

Helium and sodium form stable compound at high pressure

Can helium bond with other elements to form a stable compound? Students attentive to Utah State University professor Alex Boldyrev's introductory chemistry lectures would immediately respond "no." And they'd be correct - if the scholars are standing on the Earth's surface.


Ball-and-stick representation, left, and polyhedral representation, right, of chemical bonding analysis of the Na2He structure, where half of the Na8 cubes are occupied by He atoms (shown as polyhedra) and half by two electrons (shown as red spheres.). Pink and gray atoms represent Na and He, respectively.

Credit: Ivan Popov/Utah State University


An international group of scientists, including chemists from Utah State University, report helium can bond with sodium at high pressure. Here, an 8c-2e bond is found inside every empty Na8 cube of the Na2He structure. For clarity, only two such bonds are shown.

Credit: Ivan Popov/Utah State University

But all bets are off, if the students journey to the center of the Earth, à la Jules Verne's Otto Lidenbrock or if they venture to one of the solar system's large planets, such as Jupiter or Saturn.

"That's because extremely high pressure, like that found at the Earth's core or giant neighbors, completely alters helium's chemistry," says Boldyrev, faculty member in USU's Department of Chemistry and Biochemistry.

It's a surprising finding, he says, because, on Earth, helium is a chemically inert and unreactive compound that eschews connections with other elements and compounds. The first of the noble gases, helium features an extremely stable, closed-shell electronic configuration, leaving no openings for connections.

Further, Boldyrev's colleagues confirmed computationally and experimentally that sodium, never an earthly comrade to helium, readily bonds with the standoffish gas under high pressure to form the curious Na2He compound. These findings were so unexpected, Boldyrev says, that he and colleagues struggled for more than two years to convince science reviewers and editors to publish their results.

Persistence paid off. Boldyrev and his doctoral student Ivan Popov, as members of an international research group led by Artem Oganov of Stony Brook University, published the pioneering findings in the Feb. 6, 2017, issue of Nature Chemistry [DOI: 10.1038/NCHEM.2716.]

Additional authors on the paper include researchers from China's Nankai University, Center for High Pressure Science and Technology, Chinese Academy of Sciences, Northwestern Polytechnical University, Xi'an and Nanjing University; Russia's Skolkovo Institute of Science and Technology, Moscow Institute of Physics and Technology, Sobolev Institute of Geology and Mineralogy and RUDN University; the Carnegie Institution of Washington, Lawrence Livermore National Laboratory, Italy's University of Milan, the University of Chicago and Germany's Aachen University and Photo Science DESY.

Boldyrev and Popov's role in the project was to interpret a chemical bonding in the computational model developed by Oganov and the experimental results generated by Carnegie's Alexander Goncharov. Initially, the Na2He compound was found to consist of Na8 cubes, of which half were occupied by helium atoms and half were empty.

"Yet, when we performed chemical bonding analysis of these structures, we found each 'empty' cube actually contained an eight-center, two-electron bond," Boldyrev says. "This bond is what's responsible for the stability of this enchanting compound."

Their findings advanced the research to another step.

"As we explore the structure of this compound, we're deciphering how this bond occurs and we predicted that, adding oxygen, we could create a similar compound," Popov says.

Such knowledge raises big questions about chemistry and how elements behave beyond the world we know. Questions, Boldyrev says, Earth's inhabitants need to keep in mind as they consider long-term space travel.

"With the recent discovery of multiple exoplanets, we're reminded of the vastness of the universe," he says. "Our understanding of chemistry has to change and expand beyond the confines of our own planet."

Media Contact

Alexander Boldyrev
a.i.boldyrev@usu.edu
435-797-1630

http://www.usu.edu 

Alexander Boldyrev | EurekAlert!

Further reports about: chemical bonding helium atoms noble gases space travel

More articles from Life Sciences:

nachricht Bioenergy cropland expansion could be as bad for biodiversity as climate change
11.12.2018 | Senckenberg Forschungsinstitut und Naturmuseen

nachricht How glial cells develop in the brain from neural precursor cells
11.12.2018 | Universitätsmedizin der Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Electronic evidence of non-Fermi liquid behaviors in an iron-based superconductor

11.12.2018 | Physics and Astronomy

Topological material switched off and on for the first time

11.12.2018 | Materials Sciences

NIST's antenna evaluation method could help boost 5G network capacity and cut costs

11.12.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>