Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Mechanism Identified in Bacteria as Potential Target for Developing New Antibiotics

23.07.2012
Researchers from Florida Atlantic University’s Charles E. Schmidt College of Medicine have identified a unique mechanism in bacteria that has the potential to serve as a target for developing new antibiotics for diseases such as AIDS and soft tissue infections including respiratory and urogenital tracts, which are currently difficult to treat.

The results of these findings were published in an article titled “Novel One-step Mechanism for tRNA 3’-End Maturation by the Exoribonuclease RNase of Mycoplasma gentialium” in the current issue of the Journal of Biological Chemistry.

Co-authors of the article are Ravi K. Alluri, a pre-doctoral student in the department of biomedical science and Dr. Zhongwei Li, Ph.D., associate professor of biomedical science in FAU’s Charles E. Schmidt College of Medicine.

Li and Alluri explain that every organism lives on the same principle that genes direct the production of proteins. This process depends on a set of small RNAs called tRNAs that carry the building blocks of proteins. A tRNA is produced from its gene initially as a precursor that contains extra parts at each end (5’ and 3’ ends) and sometimes in the middle. These extra parts must be removed through RNA processing before tRNA can work during protein production. The processing of tRNA 5’ end has been known for quite some time and work on this enzyme has received a Nobel Prize. Processing of the 3’ end is much more complicated and has only been revealed in some organisms more recently. Organisms that have nucleus in their cells, including humans, appear to process the 3’ end of tRNA in a similar way. A tRNA must be precisely processed before it can carry a building block for proteins.

“Intriguingly, bacteria appear to process the 3’ end of tRNA very differently,” said Alluri. “And we are still trying to reveal the various enzymes called RNases, which remove the 3’ extra parts of tRNA precursors.”

Some of the RNases cut the RNA in the middle, while others trim the RNA from the 3’ end. Most of the bacterial pathways involve multiple RNases to complete tRNA 3’ processing.

“Knowing how tRNA is processed in different types of bacteria is important not only for understanding how bacteria live, but also for developing novel antibiotics that specifically control bacterial pathogens,” said Li.

One such pathogen is the bacterium Mycoplasma genitalium, which is the second smallest known free-living organism that is thought to cause infertility. Alluri and Li’s current work focuses on this bacterium—its genome only contains about 10 percent of the genes found in other common bacteria. Surprisingly, this bacterium contains none of the known RNases for tRNA 3’ processing and hence it has to use a different RNase to do so.

“What we have discovered with Mycoplasma genitalium is that it uses a completely different RNase called RNase R to process the 3’ end of tRNA,” said Alluri. “RNase R can trim the 3’ extra part of a tRNA precursor to make a ‘functional’ tRNA. It is even smart enough to recognize some structural features in the tRNA and tell where the trimming has to stop without harming the mature tRNA.”

The ability of RNase R to completely remove the 3’ extra RNA bases in a single-step trimming reaction represents a novel mechanism of tRNA 3’ processing. Other mycoplasmas generally have small genomes and likely process tRNA in the same way. Using only one enzyme for this complicated task saves genetic resources for mycoplasmas.

“Importantly, blocking the function of RNase R in mycoplasmas can stop protein production and kill the bacteria, making RNase R an excellent target of new antibiotics for treatment of mycoplasma infection,” said Li.

About Florida Atlantic University:
Florida Atlantic University, established in 1961, officially opened its doors in 1964 as the fifth public university in Florida. Today, the University serves more than 29,000 undergraduate and graduate students at sites throughout its six-county service region in southeast Florida, where its annual economic impact exceeds $6.3 billion. FAU’s world-class teaching and research faculty serves students through 10 colleges: the Dorothy F. Schmidt College of Arts and Letters, the College of Business, the College for Design and Social Inquiry, the College of Education, the College of Engineering and Computer Science, the Graduate College, the Harriet L. Wilkes Honors College, the Charles E. Schmidt College of Medicine, the Christine E. Lynn College of Nursing and the Charles E. Schmidt College of Science. FAU is ranked as a High Research Activity institution by the Carnegie Foundation for the Advancement of Teaching. The University is placing special focus on the rapid development of three signature themes – marine and coastal issues, biotechnology and contemporary societal challenges – which provide opportunities for faculty and students to build upon FAU’s existing strengths in research and scholarship. For more information, visit www.fau.edu.

Gisele Galoustian | Newswise Science News
Further information:
http://www.fau.edu

More articles from Life Sciences:

nachricht Lethal combination: Drug cocktail turns off the juice to cancer cells
12.12.2018 | Universität Basel

nachricht Smelling the forest – not the trees
12.12.2018 | Universität Konstanz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>