Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two-cells-in-one combo therapy could bolster leukemia treatment

31.10.2018

A new delivery system guides drugs directly to cancer cells in bone marrow

A cancer therapy based on fusing two types of cells into a single unit shows promise in strengthening existing treatments for acute myeloid leukemia. The approach joins blood platelets that carry cancer drugs with stem cells that guide the platelets into bone marrow where leukemia begins.


This is a scanning electron microscope colorized to show the hematopoietic stem cells (purple) and blood platelets (green) joined together.

Credit: Zhen Gu Research Lab/UCLA Samueli

Researchers found that when injected into mice that had acute myeloid leukemia, the combination therapy halted the disease from developing any further. Of the mice that received the treatment, 87.5 percent were cured by 80 days after the combination cells were injected. Those mice also were all resistant to leukemia cells that were re-injected two months after the 80-day period.

The study was published in Nature Biomedical Engineering.

Zhen Gu, a professor of bioengineering at the UCLA Samueli School of Engineering who led the study, said the approach could be used in concert with other therapies, such as chemotherapy and stem cell treatment, to improve their effectiveness. Gu said the method would have to be tested and approved in human clinical trials before it could be incorporated in treatments for people with leukemia.

Acute myeloid leukemia is a cancer that starts in bone marrow and can spread to the bloodstream and other parts of the body. With a compromised immune system, a person with this type of leukemia could die from complications from other diseases.

As a treatment for leukemia, chemotherapy on its own is only moderately effective: Leukemia fails to go into remission in about 1 in 3 patients following chemotherapy, according to the American Cancer Society. And about half of people with the disease who do experience remission may have a relapse -- typically within two years after treatment -- usually because chemotherapy cannot reach cancer cells in bone marrow.

The UCLA-led research aimed to solve that problem by devising a method to deliver medicine directly into the bone marrow. The approach, termed "cell combination drug delivery," is the first to link two different cells together for therapeutic purposes.

In the combined cells, the blood platelets are used to deliver immunotherapy drugs called checkpoint inhibitors (the UCLA researchers used a drug called an aPD-1 antibody), which seek out cancer cells and neutralize their defenses. Once this occurs, the body's immune system can identify and destroy the cancer cells.

"This part of the cell combination is like a delivery truck," Gu said. "We can package medicines or immune system boosters on the cell surface of platelets, and have them activated to unload once at the target site inside the body."

The second element of the two-cell combination is hematopoietic stem cells, or blood stem cells, which can find their way into the bone marrow through specific chemical signals.

"The hematopoietic stem cells are like a homing signal to the bone marrow," said Quanyin Hu, a lead author of the paper and former doctoral student in Gu's research group. "Once the stem cells guide the combo cells into the marrow, the platelets can be activated. They release immunotherapy cargoes inside the marrow to facilitate the body's own defenses, in this case T cells, to kill leukemia cells."

The researchers plan to continue studying the approach as a potential therapy for leukemia and other diseases.

###

Gu also has UCLA affiliations with the California NanoSystems Institute, the Jonsson Comprehensive Cancer Center, and the Center for Minimally Invasive Therapeutics.

Senior authors of the paper were Dr. Joshua Zeidner and Dr. Gianpietro Dotti of the University of North Carolina, Chapel Hill, and Ke Cheng, a professor in the Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina, Chapel Hill.

The other authors of the study include students and research scientists from UCLA and from China's Fudan University and South China University of Technology.

The research was supported by funding from UCLA; the University of North Carolina, Chapel Hill and North Carolina State University, where Gu was previously a faculty member; and a Sloan Research Fellowship.

Amy Akmal | EurekAlert!
Further information:
https://samueli.ucla.edu/two-cells-in-one-combo-could-be-platform-to-bolster-leukemia-treatment/

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>