A new method to quickly identify outliers in air quality monitoring data

The PM2.5 monitoring instruments at State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences. Image by TANG Xiao

In practice, manual inspection is often applied to identify these outliers. However, as the amount of data grows rapidly, this method becomes increasingly cumbersome.

To deal with the problem, Dr. WU Huangjian and Associate Professor TANG Xiao from the Institute of Atmospheric Physics, Chinese Academy of Sciences, propose a fully automatic outlier detection method based on the probability of residuals.

The method adopts multiple regression methods, and the regression residuals are used to discriminate outliers. Based on the standard deviations of the residuals, probabilities of the residuals can be calculated, and the observations with small probabilities are tagged as outliers and removed by a computer program. Their findings are published in Advances in Atmospheric Sciences.

“By introducing the probabilities of residuals, multiple rules can be used for identifying outliers on the same framework,” says Dr. Wu.

“For example, by assuming that the residuals of spatial regression and temporal regression obey a bivariate normal distribution, spatial and temporal consistencies can be simultaneously evaluated for better identification of outliers”.

The method can flag potentially erroneous data in the hourly observations from 1436 stations of the China National Environmental Monitoring Center (CNEMC) within a minute. Indeed, it has been used in CNEMC's air quality forecasting system, and is going to be integrated into the data management system. The hope is that outliers in the system's real-time air quality data will be removed in the near future.

The method is published in Advances in Atmopheric Sciences.

Media Contact

Zheng Lin
jennylin@mail.iap.ac.cn
86-108-299-5053

 @aasjournal

http://english.iap.cas.cn/ 

All latest news from the category: Earth Sciences

Earth Sciences (also referred to as Geosciences), which deals with basic issues surrounding our planet, plays a vital role in the area of energy and raw materials supply.

Earth Sciences comprises subjects such as geology, geography, geological informatics, paleontology, mineralogy, petrography, crystallography, geophysics, geodesy, glaciology, cartography, photogrammetry, meteorology and seismology, early-warning systems, earthquake research and polar research.

Back to home

Comments (0)

Write a comment

Newest articles

Illustration of the thermodynamics-inspired laser beam shaping process in optical thermodynamics research.

Thermodynamics-Inspired Laser Beam Shaping Sparks a Ray of Hope

Inspired by ideas from thermodynamics, researchers at the University of Rostock and the University of Southern California have developed a new method to efficiently shape and combine high-energy laser beams….

Covalent Organic Framework COF-999 structure for CO2 absorption

A Breath of Fresh Air: Advanced Quantum Calculations Enable COF-999 CO₂ Adsorption

Quantum chemical calculations at HU enable the development of new porous materials that are characterized by a high absorption capacity for CO2 Climate experts agree: To overcome the climate crisis,…

Satellite imagery showing vegetation loss due to multi-year droughts

Why Global Droughts Tied to Climate Change Have Left Us Feeling Under the Weather

A study led by the Swiss Federal Institute for Forest, Snow and Landscape Research WSL shows that there has been a worrying increase in the number of long droughts over…