Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Two bilateral French-Austrian research projects start at IST Austria

11.06.2018

Research on cell division and synapse function funded by FWF and ANR │Project leaders at IST Austria are Carl-Philipp Heisenberg und Johann Danzl

Two joint projects between labs at the Institute of Science and Technology (IST) Austria and at French research institutes, funded by the Austrian Science Fund FWF and the Agence Nationale de la Recherche ANR, are kicking-off.


Phallusia mammillata, a type of ascidia.

Waielbi (CC BY-SA 3.0)


Super-resolution STED image of a synaptic protein (green), indicating the location of synapses on a nerve cell (blue).

Johann Danzl, IST Austria

The lab of Carl-Philipp Heisenberg at IST Austria, together with the lab of Alex MacDougall at Centre national de la recherche scientifique (CNRS), will study how polarity, shape and mechanics of cells control cell division. Johann Danzl at IST Austria partners with the lab of Olivier Thoumine at the Interdisciplinary Institute for Neuroscience in Bourdeaux to study which role synaptic adhesion molecules play in synapse function, using optically controlled molecules and high-resolution optical imaging. The bilateral French-Austrian Joint Research Projects are funded for three years with a total of around 250,000€ each.

What are the rules controlling cell division?

Ascidians, or sea squirts, are closely related to vertebrates but look rather unremarkable. Their name derives from the Greek word for “little bag”, and indeed the 1mm to 10 cm long sea animals resemble odd blobs. While they look unassuming as adults, the embryos have a remarkable characteristic: they consist only of a small number of cells, and the positioning and timing of cell divisions are identical between different individuals of the same species – and even between species. But what are the rules that govern this so-called “invariate cleavage pattern”? In the joint project, the Heisenberg and MacDougall labs will investigate this question in the ascidian Phallusia mammillata.

Maternal factors and gene-regulatory networks are known to affect cell division and position in the ascidian embryo. However, cells in the embryo do not exist in isolation, but press against each other. Cues are likely to spread between cells through adhesion, which transmits mechanical forces across cells. But how do these physical forces influence cleavage pattern and cell position? The Heisenberg and MacDougall labs will pool their expertise to answer this question.

The McDougall lab previously showed that the ascidian cell division pattern depends on the positioning of the so-called spindle along the cell axis. The spindle is the structure inside a dividing cell that distributes copies of the cell’s genetic material between the new cells, and its position along the so-called apicobasal cell axis influences the position of division. In the new project, the labs will combine molecular, cellular and biophysical experiments to look at how apicobasal cell polarization interacts with cell shape to orient cell division and give shape to the embryo. This project combines the expertise of the ascidian laboratory led by MacDougall with the expertise of the Heisenberg laboratory in measuring the mechanical properties of cells to unravel the complex interplay between apicobasal polarity and cell shape.

Which role do synaptic adhesion molecules play in synaptic connections?

Signals in our brains are sent from one neuron to another via their connections, the synapses. The message itself is sent through chemicals called neurotransmitters, which are released by the pre-synaptic neuron and sensed through receptors on the post-synaptic neuron. But the pre- and post-synaptic neurons are also structurally connected through so-called adhesion molecules. These neuronal adhesion molecules, such as neurexins on the pre-synaptic neuron and neuroligins on the post-synaptic neuron, play important roles in wiring, sculpting and maintaining synaptic connections. But how do synaptic adhesion molecules control the formation of synapses? Johann Danzl at IST Austria and Olivier Thoumine investigate this question by putting the adhesion molecules under light control, helping to understand synaptic development and function.

In the project, Danzl and Thoumine will use optogenetically controlled synaptic adhesion molecules, which can be switched on and off with light at exactly defined time points. In this way, the researchers can follow the formation of synapses in living neurons as adhesion molecules are switched from the off into the on state. The Thoumine lab is specialized in neuronal adhesion proteins, with expertise in single molecule imaging, computation and electrophysiology to study adhesion molecules and their dynamics at the single-molecule level. The lab of Johann Danzl at IST Austria has expertise in imaging using super-resolution nanoscopy, which has a much higher resolution than conventional light microscopy, and optical control of photoswitchable molecules. This allows them to image the fine structural features of neuronal cells and synapses. Bringing the expertise of these labs together, the project will enable the scientists to dynamically and quantitatively describe and regulate adhesion protein clustering and function at synapses.

IST Austria
The Institute of Science and Technology (IST Austria) is a PhD-granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. The graduate school of IST Austria offers fully-funded PhD positions to highly qualified candidates with a bachelor’s or master’s degree in biology, neuroscience, mathematics, computer science, physics, and related areas.

www.ist.ac.at

Weitere Informationen:

http://ist.ac.at/en/research/research-groups/heisenberg-group/ Website of Heisenberg lab
http://ist.ac.at/en/research/research-groups/danzl-group/ Website of Danzl lab

Dr. Elisabeth Guggenberger | Institute of Science and Technology Austria

More articles from Life Sciences:

nachricht Tiny Helpers that Clean Cells
14.08.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Light-controlled molecules: Scientists develop new recycling strategy
14.08.2018 | Humboldt-Universität zu Berlin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

Im Focus: A molecular switch may serve as new target point for cancer and diabetes therapies

If certain signaling cascades are misregulated, diseases like cancer, obesity and diabetes may occur. A mechanism recently discovered by scientists at the Leibniz- Forschungsinstitut für Molekulare Pharmakologie (FMP) in Berlin and at the University of Geneva has a crucial influence on such signaling cascades and may be an important key for the future development of therapies against these diseases. The results of the study have just been published in the prestigious scientific journal 'Molecular Cell'.

Cell growth and cell differentiation as well as the release and efficacy of hormones such as insulin depend on the presence of lipids. Lipids are small...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Can radar replace stethoscopes?

14.08.2018 | Medical Engineering

The end-Cretaceous extinction unleashed modern shark diversity

14.08.2018 | Life Sciences

Light-controlled molecules: Scientists develop new recycling strategy

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>