Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turn off Per2 – Turn on Healthy Aging

19.04.2016

Due to a loss of functionality in hematopoietic stem cells, immune defects occur during aging. Now, researchers from Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) in Jena, Germany, identified gene Per2, whose deletion leads to a stabilization of the number of immune cells in the blood of aged mice and prolongs their lifespan. Results are published online in Journal Nature Cell Biology on April 18, 2016.

There’s no other age group suffering more from infectious diseases than seniors. With growing age, the risk of chronic and cute infections increases. This is due to the diminishing potential of hematopoietic stem cells (HSC) to build blood and immune cells in an appropriate number.


Deletion of gene „Per2“ improves the immune system in old mice and prolongates their lifespan by up to 15%.

[Source: iStock/FLI/Wang et al. 2016]

In particular, HSC’s capability to build lymphocytes is strongly declining, which leads to imbalances in blood cell composition and, thus, to immune defects limiting overall fitness and organismal survival during aging. There is experimental evidence that the accumulation of DNA damage contributes to these aging-induced immune impairments.

Now, a group of researchers lead by Karl Lenhard Rudolph, Scientific Director of Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), identified gene “Per2” as a genetic switch for a better immune system in mice: Per2 gene deletion ameliorates DNA damage responses in HSC leading to stabilization of hematopoietic stem and progenitor cells in aging mice. Hence, mice were less prone to infections and exhibited an elongated lifespan by 15 % without increases in cancer. The results of the study are published online on April 18, 2016, in Journal Nature Cell Biology.

... more about:
»DNA »DNA damage »FLI »damage »immune system »stem cells

“Circadian Clock“-gene Per2 identified by a genetic screen

For their study, in vivo RNA-mediated interference (RNAi) screenings were conducted in mice. 459 putative tumor suppressor genes were targeted to identify genes that limit the self-renewal capacity of HSC in response to DNA damage and aging. This screen identified “period circadian clock 2 (Per2)”-gene – usually one out of various genes regulating sleep-wake cycle – to represent a major factor limiting the maintenance and repopulation capacity of HSC in the context of various types of DNA damage and aging.

Interestingly, Per2 deletion was sufficient to maintain a balanced production of lymphocytes, and hence, to improved immune function in aging mice. A similar effect was also found for DNA damages caused by the shortening of telomeres – the protective caps at our chromosomes’ ends –, a mechanism though to be relevant for human aging.

A further step towards healthy aging

“All in all, these results are very promising, but equally surprising”, K. Lenhard Rudolph summarizes. “We did not expect such a strong connection between switching off a single gene and improving the immune system so clearly”. It will be of future interest to study if the results are transferable to humans. Although humans and mice are genetically quite similar, genes usually regulate myriad of processes in an organism, and possible side-effects of Per2 deletion will have to be elucidated very carefully.

Interestingly, Per2 gene mutations in humans have been associated with advanced sleep disorders leading to advanced tiredness of the patients in the early evening hours. “It is not yet clear whether this mutation in humans would have a benefit such as improved immune functions in aging – it is of great interest for us to further investigate this” Rudolph says.

Publication

Wang J, Morita Y, Han B, Niemann S, Löer B, Rudolph KL.
Per2 induction limits lymphoid-biased haematopoietic stem cells and lymphopoiesis in the context of DNA damage and ageing.
Nature Cell Biology 2016 (e-pub ahead of print), DOI: 10.1038/ncb3342.

Contact

Dr. Evelyn Kästner
Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstr. 11, D-07745 Jena
Tel.: + 49 3641-656373, E-Mail: presse@leibniz-fli.de

Background information

The Leibniz Institute on Aging – Fritz Lipmann Institute (FLI) is the first German research organization dedicated to biomedical aging research since 2004. More than 330 members from over 30 nations explore the molecular mechanisms underlying aging processes and age-associated diseases. For more information, please visit http://www.leibniz-fli.de.

The Leibniz Association connects 88 independent research institutions that range in focus from the natural, engineering and environmental sciences via economics, spatial and social sciences to the humanities. Leibniz Institutes address issues of social, economic and ecological relevance. They conduct knowledge-driven and applied basic research, maintain scientific infrastructure and provide research-based services. The Leibniz Association identifies focus areas for knowledge transfer to policy-makers, academia, business and the public. Leibniz Institutes collaborate intensively with universities – in the form of “WissenschaftsCampi” (thematic partnerships between university and non-university research institutes), for example – as well as with industry and other partners at home and abroad. They are subject to an independent evaluation procedure that is unparalleled in its transparency. Due to the institutes’ importance for the country as a whole, they are funded jointly by the Federation and the Länder, employing some 18,100 individuals, including 9,200 researchers. The entire budget of all the institutes is approximately 1.64 billion EUR. See http://www.leibniz-association.eu for more information.

Weitere Informationen:

http://www.leibniz-fli.de - Website Leibniz Institute on Aging - Fritz Lipmann Institute (FLI)

Dr. Kerstin Wagner | idw - Informationsdienst Wissenschaft

Further reports about: DNA DNA damage FLI damage immune system stem cells

More articles from Life Sciences:

nachricht Helping to Transport Proteins Inside the Cell
21.11.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht UNH researchers create a more effective hydrogel for healing wounds
21.11.2018 | University of New Hampshire

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First diode for magnetic fields

Innsbruck quantum physicists have constructed a diode for magnetic fields and then tested it in the laboratory. The device, developed by the research groups led by the theorist Oriol Romero-Isart and the experimental physicist Gerhard Kirchmair, could open up a number of new applications.

Electric diodes are essential electronic components that conduct electricity in one direction but prevent conduction in the opposite one. They are found at the...

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Helping to Transport Proteins Inside the Cell

21.11.2018 | Life Sciences

Meta-surface corrects for chromatic aberrations across all kinds of lenses

21.11.2018 | Power and Electrical Engineering

Removing toxic mercury from contaminated water

21.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>