Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Lypla1 Gene Impacts Obesity in a Sex-Specific Manner

18.02.2019

Susceptibility to obesity, insulin resistance and other cardio-metabolic traits may also be dependent on a person’s sex. An international research team of the University of California (UCLA), Helmholtz Zentrum München, a partner of the DZD, and Ludwig-Maximilians-Universität München studied sex differences and sex-specific interaction with the genetic background in cardio-metabolic phenotypes. The researchers discovered, among other things, a sex-specific obesity locus of the Lypla1 gene, which is associated with human obesity. The results of the study have now been published in Cell Metabolism.

Men and women may be differently susceptible to obesity, insulin resistance, and other cardio-metabolic traits. Women often have more advantageous metabolic profiles.


This has been described for mice but also for humans. But how does sex interact with genes? What role does natural genetic variance play? And how does this affect the development of cardio-metabolic traits?

In order to answer these questions, an international team of researchers used an animal model (hybrid mouse diversity panel) to search for sex-specific differences in 50 cardio-metabolic traits.

The effect of sex on cardio-metabolic traits was investigated in terms of sex-specific correlations with specific disease phenotypes, their genetic architecture and the underlying expression networks in fat and liver.

It was found that sex – depending on the genetic background – plays a role in gene expression and the development of cardio-metabolic traits. The research team discovered a sex-specific obesity locus for the Lyplal1 gene.

"In addition, we were able to show that there is sex-specific regulation for the “beiging” of white adipose tissue* and sex-specific interactions for mitochondrial function," said UCLA Professor Aldons J. Lusis, last author and head of the study.

The study showed that females have a higher mitochondrial activity and produce more brown adipose tissue ("beiging"). This reduces fat mass and insulin resistance. In males, the interaction between genes and sex tends to lead to low mitochondrial activity and low beiging. Weight and insulin resistance increase.

"In the reference literature there are already indications of major differences in adipose biology between sexes also in humans. This study provides insights into the depth and breadth of sex differences in metabolism.

We believe that our results provide compelling evidence as to why males and females in biological research should be treated as distinct organisms as a whole, rather than attempting to reconcile these differences one molecule at a time," said DZD researcher Professor Susanna Hofmann, MD of the Institute for Diabetes and Regenerative Research of the Helmholtz Diabetes Center.

Her group, together with Professor Axel Walch from the Core Facility Pathology & Tissue Analytics at Helmholtz Zentrum München, examined the adipose tissue and analyzed the sex differences in the browning of white adipose tissue.

There are still many gaps in our understanding of the biology underlying these sex-specific differences. As a long-term goal, the researchers therefore want to develop a biological network model that describes the differences between men and women (the ''sex-ome'') at system level. Such a model will require identifying the primary and downstream sex-biased factors that act on the network and understanding how the sex-biased network interactions give rise to sex differences in the emergent phenotypes.

*Beiging (browning)
Brown adipose tissue can produce heat through the oxidation of fatty acids. This takes place in numerous mitochondria, which are also responsible for the brownish coloration of the tissue. If the "good" brown fat is activated, the metabolism is stimulated and the "bad" white fat deposits are reduced. The occurrence of brown or beige adipocytes in white adipose tissue is called browning or beiging, a phenomenon associated with increased energy consumption and, at least in the mouse model, with protection against obesity.

Wissenschaftliche Ansprechpartner:

University Professor Susanna Hofmann, MD
Helmholtz Diabetes Center
Institute for Diabetes and Regeneration Research
Helmholtz Zentrum München
German Research Center for Environmental Health, GmbH
Ingolstädter Landstrasse 1
85764 Neuherberg
Germany
Phone: ++49-89-3187-2112
e-mail: susanna.hofmann@helmholtz-muenchen.de

Originalpublikation:

Norheim et al., (2019): Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metabolism, DOI: 10.1016/j.cmet.2018.12.013

Birgit Niesing | idw - Informationsdienst Wissenschaft
Further information:
http://www.dzd-ev.de/

More articles from Life Sciences:

nachricht New technique for in-cell distance determination
19.03.2019 | Universität Konstanz

nachricht Dalian Coherent Light Source reveals hydroxyl super rotors from water photochemistry
19.03.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

Im Focus: Sussex scientists one step closer to a clock that could replace GPS and Galileo

Physicists in the EPic Lab at University of Sussex make crucial development in global race to develop a portable atomic clock

Scientists in the Emergent Photonics Lab (EPic Lab) at the University of Sussex have made a breakthrough to a crucial element of an atomic clock - devices...

Im Focus: Sensing shakes

A new way to sense earthquakes could help improve early warning systems

Every year earthquakes worldwide claim hundreds or even thousands of lives. Forewarning allows people to head for safety and a matter of seconds could spell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

Levitating objects with light

19.03.2019 | Physics and Astronomy

New technique for in-cell distance determination

19.03.2019 | Life Sciences

Stellar cartography

19.03.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>