# Unraveling materials' Berry curvature and Chern numbers from real-time evolution of Bloch states

Einstein is commonly quoted as saying: “The most incomprehensible thing about the world is that it is comprehensible. The fact that it is comprehensible is a miracle.”

This statement is derived from an article he wrote in 1936 for the Journal of the Franklin Institute. From a physicist’s perspective, such a ‘miraculous comprehension’ most likely indicates that the observed phenomena are very well interpreted by the natural laws, expressed as mathematical equations.

On the other hand, the objectivity and indispensability of mathematical knowledge have been debated ever since Plato and Aristotle. Similarly, questions regarding the role of mathematics in the study of physical phenomena have been raised in recent solid state physics, particularly on the topological notion of insulators.

Thouless et. al. proposed in 1982¹ that the Hall conductivity of an insulator is to be quantized as indexed by a mathematically-devised integer, reflecting the topological structure of the quantum mechanical nature.

Since then, Michael Berry (1984)² has identified that such a mathematical number should be related to the phase structure of the quantum mechanical wave-function. According to Haldane (1988)³ and Kane and Mele (2005)⁴, real materials can be geared by spin-orbit coupling to possess such a non-trivial topological number. This has resulted in a wealth of studies to explore topologically non-trivial materials, particularly for the systems preserving time-reversal symmetry.

In this very mathematical characterization of physical systems, a great doubt is cast over the realness of the mathematically devised number or whether the topological constant can be measured experimentally. Instead of directly contemplating on this issue, the team has developed a computation method that can accurately calculate the Hall conductivity of insulators.

The scientists found that the entire classification of these materials can be achieved by their conductivity itself instead of the mathematically devised topological number. By calculating the time-dependent quantum mechanical equation, they were able to numerically quantify the electrons’ velocity, which was formulated by Michael Berry (1984). The summation of the electrons’ velocity is to be quantized and the detailed intrinsic quantum mechanical structure can be labelled by those quantum numbers.

In short, the team proposes to use physical quantity, less contaminated by mathematical notion, to characterize the materials’ properties, which provide a more direct link to experimental measurements.

REFERENCES

1 D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, Quantized Hall Conductance in a Two-Dimensional Periodic Potential, Physics Review Letters 49, 405 (1982)

2 M. V. Berry, Quantal Phase-Factors Accompanying Adiabatic Changes, Proc. R. Soc. Lon. Ser-A 392, 45 (1984).

3 F. D. M. Haldane, Model for a Quantum Hall-Effect without Landau-Levels-Condensed-Matter Realization of the Parity Anomaly, Physical Review Letters 61, 2015 (1988)

4 C. L. Kane and E. J. Mele, Quantum spin Hall effect in graphene, Physical Review Letters 95, 22 (2005)

Noejung Park (corresponding author): noejung@unist.ac.kr

Jenny Witt, PR officer, MPSD: jenny.witt@mpsd.mpg.de / +49 (0)40 8998 6593

#### Media Contact

#### Further information:

http://www.mpsd.mpg.deAll news from this category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

### Latest posts

## Optically Active Defects Improve Carbon Nanotubes

Heidelberg scientists achieve defect control with a new reaction pathway. The properties of carbon-based nanomaterials can be altered and engineered through the deliberate introduction of certain structural “imperfections” or defects….

## Visualizing the motion of vortices in superfluid turbulence

Nobel laureate in physics Richard Feynman once described turbulence as “the most important unsolved problem of classical physics.” Understanding turbulence in classical fluids like water and air is difficult partly…

## Toward a reliable oral treatment for sickle cell disease

For the millions of people worldwide who have sickle cell disease, there are only a few treatment options, which include risky bone marrow transplants, gene therapy or other treatments that…