Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The goal: water-saving plants

16.09.2014

Growing crops with better drought tolerance capable of withstanding climate change: That is the goal the Würzburg plant researchers are pursuing. They describe the latest progress of their research in the journal "Science Signaling".

Crops such as potatoes and sugar beets are much less tolerant to dry conditions compared to wild plants. "This is the result of plant breeding aimed at maximising yield," says plant scientist Rainer Hedrich from the University of Würzburg. "Our high-performance plants have lost the natural stress tolerance of their early ancestors and have become dependent on artificial watering and fertilisation."

How have wild plants acquired and maintained their drought tolerance within the course of Earth's history? Hedrich's team cooperated with Finnish colleagues from Tartu and Helsinki to look into this question. The scientists are searching for the answer deep inside the leaves of plants where they are analysing the molecular processes which the plants use to limit the loss of water.

How different plants handle dry conditions

... more about:
»ABA »SLAC1 »hormone »leaves »mechanism »mosses »pores »pressure »respond »sugar »tolerance

Drought was not a problem for early algae and water plants. Having conquered the land in the course of evolution, however, they were confronted with sustained periods of drought. To survive these periods, early land plants such as mosses and ferns developed desiccation tolerance as early as 480 million years ago.

The key to this capability lies in abscisic acid (ABA), a plant hormone: In times of low water availability, the plants synthesise this stress hormone and thereby activate genes for special protective proteins, allowing them to survive significant water loss or even complete desiccation.

The flowering plants succeeding mosses and ferns in the course of evolution have a quite different approach to coping with drought: Their leaves have pores that can be closed to significantly reduce water loss. The microscopically small pores are each surrounded by two specialised guard cells. When the ABA stress hormone signalises drought, they reduce their cell pressure and thereby close the pore.

Signal chain at guard cell more complex than thought

In the past years, Hedrich's team has investigated the molecular details of the signal chain from synthesising the ABA hormone to closing the pores. A key role is attributed to channels located in the guard cells which release ions from these cells upon receiving a signal. As a result, the cell pressure sinks, the pores in the leaves close and the plant loses less water to the environment.

But the mechanism behind this water-saving "appliance" is even more complex than thought as Rainer Hedrich and Dietmar Geiger and colleagues report in the journal "Science Signaling": because the channels not only respond to one specific signal but to multiple different signals.

Chemically, these signals are so-called phosphorylations. Different enzymes, the protein kinases, attach phosphate molecules to the channels (SLAC1) in different places thereby activating them. A kinase named OST1 plays a major role in this context: "When it is missing in plants, the guard cells no longer respond to the ABA hormone," Geiger explains.

The goal: modifying the ON/OFF switch of the guard cells

In further biophysical analyses, the Würzburg researchers pinpointed the exact locations in which the SLAC1 channels can be switched on and off. By actuating these nanoswitches, which are single amino acids in the channel protein, the plant activates its channel proteins and thereby its water-saving mechanism.

In a next step, the scientists plan to modify this ON/OFF switch experimentally to manipulate the activity of the channels in the desired direction. Their long-term goal: growing crops with enhanced water-saving capability to better prepare them for the ongoing climate change that will entail longer dry periods. The researchers plan to conduct initial tests with potatoes and sugar beets.

Focus on the molecular evolution of drought tolerance

Hedrich's team is also investigating the evolution of drought tolerance: "We are presently cloning SLAC1 and OST1 relatives from algae, mosses, ferns and flowering plants," he says. The ultimate goal is to clarify at what point the interaction between the two molecules formed in plants and when guard cells acquired the capability to control the opening of the leaf pores using the ABA hormone.

“Site- and kinase-specific phosphorylation-mediated activation of SLAC1, a guard cell anion channel stimulated by abscisic acid” Tobias Maierhofer, Marion Diekmann, Jan Niklas Offenborn, Christof Lind, Hubert Bauer, Kenji Hashimoto, Khaled A. S. Al-Rasheid, Sheng Luan, Jörg Kudla, Dietmar Geiger, and Rainer Hedrich. Science Signaling, 9 September 2014, DOI: 10.1126/scisignal.2005703

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I of the University of Würzburg, Phone: +49 (0)931 31-86100, hedrich@botanik.uni-wuerzburg.de

Gunnar Bartsch | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

Further reports about: ABA SLAC1 hormone leaves mechanism mosses pores pressure respond sugar tolerance

More articles from Life Sciences:

nachricht Why developing nerve cells can take a wrong turn
04.06.2020 | Universität zu Köln

nachricht Innocent and highly oxidizing
04.06.2020 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Small Protein, Big Impact

In meningococci, the RNA-binding protein ProQ plays a major role. Together with RNA molecules, it regulates processes that are important for pathogenic properties of the bacteria.

Meningococci are bacteria that can cause life-threatening meningitis and sepsis. These pathogens use a small protein with a large impact: The RNA-binding...

Im Focus: K-State study reveals asymmetry in spin directions of galaxies

Research also suggests the early universe could have been spinning

An analysis of more than 200,000 spiral galaxies has revealed unexpected links between spin directions of galaxies, and the structure formed by these links...

Im Focus: New measurement exacerbates old problem

Two prominent X-ray emission lines of highly charged iron have puzzled astrophysicists for decades: their measured and calculated brightness ratios always disagree. This hinders good determinations of plasma temperatures and densities. New, careful high-precision measurements, together with top-level calculations now exclude all hitherto proposed explanations for this discrepancy, and thus deepen the problem.

Hot astrophysical plasmas fill the intergalactic space, and brightly shine in stellar coronae, active galactic nuclei, and supernova remnants. They contain...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

Why developing nerve cells can take a wrong turn

04.06.2020 | Life Sciences

The broken mirror: Can parity violation in molecules finally be measured?

04.06.2020 | Physics and Astronomy

Innocent and highly oxidizing

04.06.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>