Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The company you keep

13.02.2015

La Jolla Institute scientists reveal dual role for key T cell factor

When fighting chronic viral infections or cancers, a key division of the immune system, known as CD8 T cells, sometimes loses its ability to effectively fight foreign invaders. Overcoming so-called T cell exhaustion is crucial to treating persistent infections but the underlying molecular mechanisms remain poorly understood.


NFAT shifts the equilibrium between T cell activation and exhaustion by binding to a different subset of regulatory regions within the genome.

Credit: Courtesy of Martinez et al./Immunity 2015

Now, a team of researchers at the La Jolla Institute for Allergy and Immunology report that the shift is masterminded in part by NFAT, short for Nuclear Factor of Activated T cells, and best known for its crucial role in getting CD8 T cells battle-ready. The findings from the lab of professors Patrick Hogan and Anjana Rao, Ph.D, published in the Feb. 17, 2015, issue of the journal Immunity, lay the groundwork for novel treatments to restore immune function.

"Understanding the molecular mechanism that leads to CD8 T cell exhaustion brings us a step closer to developing strategies to induce optimal T cell responses that can successfully clear infections and kill tumor cells," explains postdoctoral researcher and co-lead author Renata M. Pereira, Ph.D. "Conversely, it may allow us to interfere with autoimmune responses that paradoxically depend on the same protein".

CD8 T cells are a subset of lymphocytes charged with killing cancer cells and cells that are infected with viruses or compromised in other ways. In previous work, the Rao and Hogan teams collaboratively pinpointed NFAT as the molecular hub that orchestrates T cell activation. When the T cell receptor on the surface of CD8 T cells recognizes a foreign protein, it kicks off a signaling cascade that culminates in the activation of NFAT and its partner AP-1. Together, the pair binds to regulatory regions in the genome and initiates a genetic program that activates T cells and readies them to fight cancer and viral infections.

In the face of chronic viral infections such as hepatitis and HIV as well as certain types of cancers, CD8 T cells become less effective over time until they ignore calls to arm. In addition, exhausted CD8 T cells start to express inhibitory cell surface receptors that receive and feed inhibitory signals into the cell establishing a negative feedback loop.

While a range of cellular markers of exhaustion, such as PD-1 and TIM3, have been characterized and are even the target of cancer immunotherapy drugs, the molecular details of how CD8 T cells switch gears were unclear.

Using NFAT as a starting point, Pereira and Gustavo J. Martinez, Ph.D., formerly a joint postdoc in the Rao and Hogan labs and now the Genomics Core Director at the Scripps Research Institute in Jupiter, Florida, established that interfering with NFAT's ability to partner with AP-1 tips the balance toward T cell exhaustion and and impairs the immune system's response to tumors and infections.

To gain a clearer picture of NFAT's role, the La Jolla Institute researchers embarked on a genome-wide survey of NFAT-binding sites in the genes occupied in activated versus exhausted CD8 T cells. The bioinformatics expertise of Professor Harri Lähdesmäki, Ph.D. and his graduate student Tarmo Äijö in the Department of Information and Computer Science at the Aalto University School of Science in Aalto, Finland was essential to this effort, said Rao.

Rao added that, "NFAT shifts the equilibrium between the activated state and exhaustion by binding to a different subset of regulatory regions within the genome." A closer look at the transcriptome--all the parts of the genome that are actively expressed at a given time--confirmed that NFAT, when acting on its own, induces a second transcriptional program that has many of the characteristic features of CD8 T cell exhaustion.

"Depending on the availability of AP-1, NFAT tips the scale toward T cell activation or exhaustion," says Martinez. In the presence of AP-1, NFAT induces T cell activation. Without it, NFAT initiates a negative regulatory program that activates genes encoding inhibitory cell surfaces markers and blunts signals received by the T cell receptor. It also interferes with CD8 T cells ability to produce cytokines, chemical messengers that recruit other arms of the immune system.

###

The work was funded by the National Institutes of Health (CA42471, AI40127, AI84167, AI095634, the European Union (FP7 grant EC-FP7-SYBILLA-201106), the Academy of Finland Centre of Excellence in Molecular Systems Immunology and Physiology Research, the German Research Foundation (SFB 1054 TP A03), the Jane Coffins Childs Memorial Fund, the Pew Latin American Fellows Program in the Biomedical Sciences and the Finnish Doctoral Programme in Computational Sciences FICS.

Full citation: "The transcription factor NFAT regulates exhaustion of activated CD8+ T cells" Gustavo J. Martinez, Renata M. Pereira, Tarmo Äijö, Edward Y. Kim, Francesco Marangoni, Matthew E. Pipkin, Susan Togher, Vigo Heissmeyer, Yi Chen Zhang, Shane Crotty, Edward D. Lamperti, K. Mark Ansel, Thorsten R. Mempel, Harri Lähdesmäki, Patrick G. Hogan, and Anjana Rao. Immunity, 2015. (DOI: http://dx.doi.org/10.1016/j.immuni.2015.01.006)

URL: http://dx.doi.org/10.1016/j.immuni.2015.01.006

About La Jolla Institute for Allergy and Immunology

The La Jolla Institute for Allergy and Immunology is dedicated to understanding the intricacies and power of the immune system so that we may apply that knowledge to promote human health and prevent a wide range of diseases. Since its founding in 1988 as an independent, nonprofit research organization, the Institute has made numerous advances leading toward its goal: life without disease.

Media Contact

Gina Kirchweger
gina@lji.org
858-752-6557

 @liairesearch

http://www.liai.org 

Gina Kirchweger | EurekAlert!

Further reports about: AP-1 Allergy CD8 NFAT T cell activation T cells cell activation immune system infections viral infections

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>