Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How “Teamwork” between Egg and Sperm Works

12.08.2013
Heidelberg researchers detect little-known protein in vertebrate fertilisation process

Researchers from Heidelberg have decoded a previously unknown molecular mechanism in the fertilisation process of vertebrates. The team of scientists at the Center for Molecular Biology of Heidelberg University identified a specific protein in frog egg extracts that the male basal bodies need, but that is produced only by the reproductive cells of the female.

This “teamwork” between the egg and sperm is what makes embryo development possible. The results of the research were published in “The Journal of Cell Biology”.

Several years ago Prof. Dr. Oliver Gruß and his colleagues used sensitive mass spectrometry to begin looking for protein materials that were newly synthesised during meiosis, as new egg cells were formed, thus making cell division efficient. In the process, they identified a previously little-known protein.

The so-called synovial sarcoma X breakpoint protein (SSX2IP) is indeed formed during meiosis, but not required for it. “At first we were at a loss to explain the function of SSX2IP”, says Dr. Felix Bärenz, a member of Oliver Gruß’ working group.

The breakthrough came when the researchers went one step further, simulating fertilisation of the frog’s egg in the test tube. It was then they discovered that the SSX2IP produced after fertilisation and penetration of the egg by the sperm reanimated the basal bodies of the sperm.

Because the egg loses its basal bodies as it matures, the reactivation of the male’s basal bodies is vital for the embryo’s development. They, in turn, build the embryo’s division apparatus – the mitotic spindles – without whose precise function continued cell division and successful embryo development would be impossible.

“In a cell culture, we were also able to prove that SSX2IP plays a similar role in human cells”, explains Prof. Gruß. Without the human SSX2IP protein, obvious errors occurred in the function of division apparatus. “It’s therefore quite conceivable that defects in SSX2IP synthesis during human egg maturation could lead to infertility or embryonic deformities”, surmises the Heidelberg biochemist.

Original publication:
F. Bärenz, D. Inoue, H. Yokoyama, J. Tegha-Dunghu, S. Freiss, S. Draeger, D. Mayilo, I. Cado, S. Merker, M. Klinger, B. Hoeckendorf, S. Pilz, K. Hupfeld, H. Steinbeisser, H. Lorenz, T. Ruppert, J. Wittbrodt, O. Gruß: The centriolar satellite protein SSX2IP promotes centrosome maturation. The Journal of Cell Biology 1 (202), 1 July 2013, p. 81-95, doi: 10.1083/jcb.201302122
Contact:
Prof. Dr. Oliver Gruß
Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH)
DKFZ-ZMBH Alliance
phone: +49 6221 54-6815
o.gruss@zmbh.uni-heidelberg.de
Communications and Marketing
Press Office
phone: +49 6221 542311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>