Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

TB Bacterium's Outer Cell Wall Disarms the Body's Defense to Remain Infectious

05.10.2011
The bacterium that causes tuberculosis has a unique molecule on its outer cell surface that blocks a key part of the body’s defense. New research suggests this represents a novel mechanism in the microbe’s evolving efforts to remain hidden from the human immune system.

Researchers found that the TB bacterium has a molecule on its outer surface called lipomannan that can stop production of an important protein in the body’s immune cells that helps contain TB infection and maintain it in a latent state. This protein is called tumor necrosis factor (TNF). When TNF is not produced in sufficient quantities, the TB bacterium can grow unchecked and cause an uncontrolled active infection inside and outside of the lungs.

“There are several unique components on the Mycobacterium tuberculosis outer cell wall that help it sneak into the lung relatively unnoticed,” said Larry Schlesinger, professor and chair of the Department of Microbial Infection and Immunity at Ohio State University and senior author of the study. “The more we can learn about how these cell wall structures influence the human immune response, the closer we can get to developing a more effective strategy to treat or even prevent an active tuberculosis infection.”

Lipomannan resembles a tree branch sprinkled with smaller sugar molecules protruding from the outer cell wall of the bacterium. The findings show that lipomannan can block TNF production at the microRNA level. MicroRNAs are small segments of RNA that regulate – or fine-tune – a gene’s protein-building function.

To date, microRNAs have been implicated most frequently in the development of cancer. Schlesinger said this research is among the first studies to show that pathogenic bacteria can influence microRNA activation in immune cells and is the first to explore how microRNAs regulate the macrophage inflammatory response to Mycobacterium tuberculosis.

Macrophages are first-responder cells in the immune response. They eat TB bacteria at the point of infection in the lung and then normally activate molecules that make pieces of the bacteria visible to infection-fighting warriors, triggering an eventual T-cell response to come to the macrophages’ aid.

The research is published this week in the online early edition of the Proceedings of the National Academy of Sciences.

About 2 billion people worldwide are thought to be infected with TB bacteria. People who are infected can harbor the bacterium without symptoms for decades, but an estimated one in 10 will develop active disease characterized by a chronic cough and chest pain. Both active and latent infections are treated with a combination of antibiotics that patients take for at least six months, and such treatment is becoming less effective with more drug-resistant bacterial strains.

Schlesinger and colleagues conducted the study comparing lipomannans from two types of bacteria – a virulent strain of Mycobacterium tuberculosis and a harmless strain called Mycobacterium smegmatis, which is often used as a control bacterium in TB research.

Many of these same researchers, led by Schlesinger, had previously isolated the lipomannans from each type of bacterial cell’s surface and used powerful biochemical analyses to characterize the significance of the lipomannans’ structural differences. In a study published recently in the Journal of Biological Chemistry, the group reported on how the surface structures on virulent TB bacteria lowered the response of a specific T-cell that typically gets recruited to fight tuberculosis.

In this newer study, the scientists compared how the structures affected the production of TNF in primary human macrophage culture experiments.

They first established that human macrophages respond differently to the two different types of bacteria lipomannans after 24 hours of exposure. Lipomannan from the virulent TB bacterium produced significantly less TNF than lipomannan from the M. smegmatis bacterium.

Though the study showed that the harmless cells increase production of TNF through a well-known receptor pathway as expected, the virulent TB bacteria did not make use of that receptor pathway. This supported the concept that the pathogenic TB bacterium has figured out another way to block the TNF protein in its quest to keep the immune system guessing, said Schlesinger, also the director of Ohio State’s Center for Microbial Interface Biology.

A single microRNA can affect the production of hundreds of proteins, and the process of identifying those relationships is ongoing. However, two microRNAs in this study were known to be relevant for their connections to genes and proteins already established as players in the immune response to TB infection: miR-125b and miR-155.

Biochemical and genetic experiments showed that macrophages stimulated with lipomannan from TB bacteria had enhanced expression of miR-125b, effectively inhibiting the production of TNF. In contrast, the lipomannan from the harmless bacteria had enhanced expression of miR-155, which regulates other compounds in a way that stimulates TNF production.

Researchers’ experimental manipulation to lower the expression of miR-125b in macrophages increased production of TNF in response to the TB bacteria lipomannan, further confirming that this regulation of TNF occurred at the microRNA level, Schlesinger said.

“This really speaks to the power of the tuberculosis bacterium to adapt to the human host,” he said. “It has had centuries to develop a sophisticated way to deal with its encounter with the human. Fortunately, genomic technology is allowing us to identify microRNAs more and more rapidly, which might allow us to catch up with the TB bacterium and figure out a way to outsmart it.”

This work was supported by grants from the National Institutes of Health.

Co-authors of the PNAS paper, all from Ohio State, include Murugesan Rajaram, Jessica Morris, Michelle Brooks, Tracy Carlson and Jordi Torrelles of the Center for Microbial Interface Biology; Bin Ni of the Medical Scientist Training Program; and Baskar Bakthavachalu and Daniel Schoenberg of the Center for RNA Biology and Department of Molecular and Cellular Biochemistry. Brooks is also affiliated with the Department of Microbiology, Carlson with the Department of Veterinary Biosciences, and Torrelles with the departments of Internal Medicine and Microbial Infection and Immunity.

Contact: Larry Schlesinger, (614) 292-8789; larry.schlesinger@osumc.edu

Written by Emily Caldwell, (614) 292-8310; caldwell.151@osu.edu

Emily Caldwell | Newswise Science News
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Sensory Perception Is Not a One-Way Street
17.10.2018 | Eberhard Karls Universität Tübingen

nachricht Sex or food? Decision-making in single-cell organisms
17.10.2018 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>