Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Switching mutations on and off again

12.04.2016

Kiel research team facilitates functional genomics with new procedure

Mould is primarily associated with various health risks. However, it also plays a lesser-known role, but one which is particularly important in biotechnology. The mould (ascomycete) Aspergillus niger, for example, has been used for for around 100 years to industrially produce citric acid, which is used as a preservative additive in many foodstuffs.


The more Doxycycline is added, the more active the mobile genetic element becomes, and the number of mutant colonies rises.

Photo: Prof. Frank Kempken

In order to research the genetic mechanisms which could shed light on the potential application spectrum of mould and its metabolic products, a research team from Kiel University has developed a new procedure in collaboration with colleagues from Leiden University in the Netherlands.

It allows the rapid production of a large number of genetic variations of the mould Aspergillus niger, and the subsequent specification of the resulting genetic attributes. The research team led by Professor Frank Kempken, head of the Department of Genetics and Molecular Biology at Kiel University and member of the research focus “Kiel Life Science”, published their new findings in the scientific journal Applied Microbiology and Biotechnology.

Biotechnological research makes use of genetically-modified model organisms, also known as mutants, in order to determine the functions of specific genes. Scientists refer to this as functional genomics. One of the procedures used for this is known as random mutagenesis. It scrambles the genetic information, and thereby produces different clones of an organism. The analysis of the varying attributes then allows conclusions to be drawn of the effects of specific genes.

In this context, the Kiel research team focussed on a line of the ascomycete Aspergillus niger, which is widely used in scientific research. It is characterised by the fact that one of the mobile genetic elements involved in the creation of mutations, known as Tan/Vader, is permanently non-functional, and can therefore not create mutations. Experiments conducted by the research team have resulted in a breakthrough, enabling an on/off switchable variant of this mobile element to be introduced to Aspergillus niger. Through the addition of an antibiotic substance known as Doxycycline, Tan/Vader can be switched on and then create mutants. When the research team did not add the substance again, the mobile element became inactive once more.

The switching on and off of the mobile element Tan/Vader thereby enables the production either of quickly and randomly mutating lines, or genetically stable lines of the mould. The behaviour of the mould lines in terms of their tendency to mutate can therefore be precisely controlled. “The new procedure allows us to create a large amount of modified mould in a short time, in order to subsequently investigate their attributes. These findings are of major significance for researching the genetic repertoire of Aspergillus niger with respect to its biotechnological potential,” said Kempken on the impact of the new research.

Filamentous moulds such as Aspergillus niger are extensively researched in biotechnology, particularly due to their ability to form complex enzymes. Such enzymes then form the basis of various applications, for example in food production or the development of new medicines. The latest results from the Kiel research team provide the scientific community with a new tool to facilitate such research in future.

Photos are available to download:
http://www.uni-kiel.de/download/pm/2016/2016-097-1.jpg
The more Doxycycline is added, the more active the mobile genetic element becomes, and the number of mutant colonies rises.
Photo: Prof. Frank Kempken

Original publication:
Paun, L., Nitsche, B., Homan, T., Ram, A.F. and F. Kempken (2016): An inducible tool for random mutagenesis in Aspergillus niger based on the transposon Vader.
Applied Microbiology and Biotechnology
Link: http://dx.doi.org/10.1007%2Fs00253-016-7438-3

Contact:
Prof. Frank Kempken
Department of Genetics and Molecular Biology
Botanical Institute and Botanical Gardens, Kiel University
Tel.: +49 (0)431-880-4274
E-mail: fkempken@bot.uni-kiel.de

More information:
Department of Genetics and Molecular Biology
Botanical Institute and Botanical Gardens, Kiel University
http://www.uni-kiel.de/Botanik/Kempken/fbkem.shtml

Research focus "Kiel Life Science“, Kiel University
http://www.kls.uni-kiel.de

Christian-Albrechts-Universität zu Kiel
Press, Communication and Marketing, Dr Boris Pawlowski, Text: Christian Urban
Postal address: D-24098 Kiel, Germany, Telephone: +49 (0)431 880-2104, Fax: +49 (0)431 880-1355
E-mail: presse@uv.uni-kiel.de, Internet: www.uni-kiel.de
Twitter: www.twitter.com/kieluni, Facebook: www.facebook.com/kieluni

Dr. Boris Pawlowski | Christian-Albrechts-Universität zu Kiel

More articles from Life Sciences:

nachricht O2 stable hydrogenases for applications
23.07.2018 | Max-Planck-Institut für Chemische Energiekonversion

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>