Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Surface Acoustic Waves Orchestrate Neuronal Networks

06.08.2018

Biophysicists from Augsburg and Santa Barbara report in Physical Review E on the first successful outcome in the targeted dynamic positioning of nerve cells on a chip. The proven Augsburg surface acoustic wave technology now opens up new ways of understanding and influencing neuronal networks.

The junior research group led by biophysicist Dr. Christoph Westerhausen at the Chair of Experimental Physics I at the University of Augsburg, in cooperation with colleagues from the University of California at Santa Barbara, has succeeded for the first time, using surface acoustic waves (sound waves induced by high-frequency signals which propagate on the surface of chips), in the targeted positioning of live neuronal cells on a biochip at periodic intervals and even in influencing the growth of the neuronal cells. "This is an important step towards so-called brain-on-a-chip systems and could fundamentally contribute to understanding the processes in the human brain," says Professor Dr. Achim Wixforth.


Neuronal cells on a biochip. The applied acoustic wave field influences not only the position of the cell but also the growth of neuronal outgrowths which connect these cells.

© Christoph Hohmann, NIM

Wixforth and his chair's biophysics group have a worldwide reputation as leading specialists in the interaction between cells and so-called surface acoustic waves on a single chip. The principle of the technology developed by Wixforth is that, as a result of a "nano-earthquake" caused by the application of an appropriate high-frequency signal to on-chip electrodes, the propagation of these sound waves on the crystal surface of the chip can be controlled.

Dynamically adjustable, controlled cell positioning

In the prestigious journal Physical Review E, Westerhausen and his Augsburg colleague Manuel Brugger now show that, based on this nanotechnology, they have succeeded in developing, together with their partners in Santa Barbara, a novel, dynamically tunable method of controlled and targeted cell positioning, including the subsequent attachment and culture of the cells on a microfluidic chip.

By acoustically capturing small polymer spheres and positioning them at variable intervals, the nanophysicists demonstrate the full range of possibilities offered by this new method. The researchers in Augsburg and their colleagues from Santa Barbara could furthermore establish the long-term biocompatibility of treatments based on the growth of various cell types — such as bone cancer cells, kidney cells or neurons — which are purposefully manipulated on the chip.

Convincing correlation of the alignment of cell-to-cell connections and the acoustic field

“The icing on the cake and probably the most important result of our work is the successful stimulation of very delicate primary neuronal cells and the outgrowths that connect these cells. The alignment of these cell-to-cell connections convincingly correlates with the particular acoustic field applied and the resulting potential landscape, and allows us to speak here of the first form of a very small neuronal network produced on a chip by means of acoustic waves", Westerhausen states.

New promising perspectives in the exploration of neuronal networks:

The possibilities of using static approaches — e.g. by an appropriate patterning of the chip surface — to produce or manipulate neuronal networks, have proven to be limited. “With our dynamic method” explains Brugger, “we can overcome this limitation and offer basic research into biophysics — such as the correlation between structure, signal propagation and function of neuronal networks —new and far-reaching perspectives for the long-term”.

Medical applications are quite conceivable

Medical applications - such as the targeted manipulation of cell growth in spinal injuries - are still a long way off, but quite conceivable. Westerhausen: "As far as the development of our new method and, above all, its potential applications are concerned, we are bubbling with ideas. By proving that with our “nano-earthquake”, or surface acoustic wave, technology, the targeted and precise arrangement of delicate neurons is feasible and that it can purposefully influence the links between neurons, we have laid an important foundation for further promising basic research and new application perspectives in this field”.


The development of the research results presented here was supported, amongst others, by the "Nanosystems Initiative Munich/NIM" (Exzellenzinitiative des Bundes – http://www.nano-initiative-munich.de) as well as through the Bayerisch-Kalifornische Hochschulzentrum as part of the BaCaTec funding initiative (http://www.bacatec.de).

Wissenschaftliche Ansprechpartner:

Dr. Christoph Westerhausen
Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
D-86159 Augsburg
christoph.westerhausen@physik.uni-augsburg.de
http://www.physik.uni-augsburg.de/exp1/mitarbeiter/02_seniors/westerhausen_chris...

Originalpublikation:

Orchestrating cells on a chip: Employing surface acoustic waves towards the formation of neural networks. Manuel S. Brugger, Sarah Grundeen, Adele Doyle, Luke Theogarajan, Achim Wixforth, and Christoph Westerhausen. Phys. Rev. E 98, 012411 – Published 18 July 2018. http://link.aps.org/doi/10.1103/PhysRevE.98.012411

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Further reports about: acoustic acoustic waves cell-to-cell connections neurons sound waves waves

More articles from Life Sciences:

nachricht The hidden structure of the periodic system
17.06.2019 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht Tiny probe that senses deep in the lung set to shed light on disease
17.06.2019 | University of Edinburgh

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>