Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar synthesis hits the sweet spot

09.05.2011
Novel tuberculosis treatments could result from success in artificially synthesizing sugar-based structures of the bacterium’s cell wall

A new strategy for synthesizing the kind of complex molecules that certain bacteria use to build their protective cell walls has been developed by Akihiro Ishiwata and Yukishige Ito from the RIKEN Advanced Science Institute in Wako[1]. The strategy applies to Mycobacterium tuberculosis, the causative agent of tuberculosis (TB), so it could lead to much-needed new medicines to combat the spread of multi-drug-resistant strains of the pathogen.

Disrupting the formation of the cell wall of M. tuberculosis is already a proven strategy for treating TB, with several of the current front-line drugs working in this way. However, the cell wall skeleton is a complex, highly branched structure, and its biosynthesis is not yet fully understood.

According to Ito, the compound he and Ishiwata made—a sugar-based structure known as the arabinan motif (Araf22) — should be a useful biological probe, helping to unravel cell wall biosynthesis. Perhaps more importantly, however, the success of their strategy suggests that larger, more complex cell wall components could be made in the same way.

Sugar-based compounds are notoriously difficult to make. Sugars are bristling with reactive alcohol groups, so molecules made from more than 20 sugar units pose a significant synthetic challenge. Nevertheless, Ishiwata and Ito succeeded in clipping together the branching chain of 22 sugar units needed to make Araf22.

Their strategy involved synthesizing small sub-structures of the mycobacterial cell wall skeleton and building from there. To make the compound, they conceptually broke down Araf22’s structure into several simpler fragments, chemically synthesized those fragments, and then clipped them together to make Araf22. This aspect of the strategy has been applied before, but Ishiwata and Ito built the fragments such that they clipped together at linear rather than branching points in their structure.

The researchers’ strategy makes the individual fragments more difficult to build, but it makes the coupling process much more efficient. Crucially, that means the strategy should work just as well as a way to make even larger and more complex components of the cell wall.

“One of the main points of this work is for us to show the way to construct the more complex compounds,” says Ishiwata. “We are now planning to synthesize more complex but structurally reliable glycans of cell wall skeletons for biological studies.” However, such compounds could even prove to be useful drugs in themselves, if they are able to disrupt the cellular machinery responsible for mycobacterial cell wall biosynthesis.

The corresponding author for this highlight is based at the Synthetic Cellular Chemistry Laboratory, RIKEN Advanced Science Institute

Journal information

[1] Ishiwata A. & Ito Y. Synthesis of docosasaccharide arabinan motif of mycobacterial cell wall. Journal of the American Chemical Society 133, 2275–2291 (2011).

gro-pr | Research asia research news

More articles from Life Sciences:

nachricht Nonstop Tranport of Cargo in Nanomachines
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Researchers find social cultures in chimpanzees
20.11.2018 | Universität Leipzig

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

Nonstop Tranport of Cargo in Nanomachines

20.11.2018 | Life Sciences

Researchers find social cultures in chimpanzees

20.11.2018 | Life Sciences

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>