Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of flower petals shows evolution at the cellular level

18.11.2011
A new study of flower petals shows evolution in action, and contradicts more that 60 years of scientific thought.

The findings are reported by a scientist from UC Santa Barbara and a research team from Harvard University in the Proceedings of the Royal Society B this week.

Columbine flowers, known as Aquilegia, evolved several lengths of petal spurs that match the tongue lengths of their pollinators, including bees, hummingbirds, and hawkmoths. The petal spurs are shaped like a tubular pocket and contain nectar at the tip. The spurs grow from 1 to 16 centimeters in length, depending on the species.

The research team discovered that longer spurs result from the lengthening of cells in one direction, called anisotropy, and not from an increased number of cells. This finding contradicts decades of scientific thinking that assumed the elongated petals form via continued cell divisions.

"When we went in and looked at this in detail, we found that even the super-long-spurred flower doesn't differ much in cell number from the short-spurred one," said Scott A. Hodges, professor in the Department of Ecology, Evolution, and Marine Biology at UCSB.

He said that most studies of shape, particularly of leaves and of some flower parts, have focused their attention primarily on genes controlling cell division. "What this study is saying is that you don't want to just look at those kinds of characteristics; here's this whole other way to produce a tremendous amount of shape diversity without involving cell divisions," said Hodges.

In long-spurred plants, the spurs reach the same length at the same point in time as the short-spurred flowers, but they keep on growing, said Hodges. The rest of the flower has to wait for the spurs to lengthen. Until then, the pollen can't be released and the ovules are not ready to be fertilized. The flower has to stop that part of development while the spurs grow. Then, almost a week later, those flowers become reproductive, after the spurs have grown longer.

The evolution of petal spurs in columbines is considered a textbook example of adaptive radiation. Like Darwin's finches, over time, the columbines evolved a variety of species to exploit different ecological niches. The short-spurred columbines can be easily pollinated by bees. Hummingbirds have long beaks and tongues and can pollinate flowers with spurs of medium length. Hawkmoths have very long tongues and can pollinate columbines with the longest spurs, such as Aquilegia longissima.

In addition to Hodges, the co-authors are Joshua R. Puzey, Sharon J. Gerbode, Elena M. Kramer, and Lakshminarayanan Mahadevan, all from Harvard University.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht X-ray scattering shines light on protein folding
10.07.2020 | The Korea Advanced Institute of Science and Technology (KAIST)

nachricht Surprisingly many peculiar long introns found in brain genes
10.07.2020 | Moscow Institute of Physics and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Excitation of robust materials

Kiel physics team observed extremely fast electronic changes in real time in a special material class

In physics, they are currently the subject of intensive research; in electronics, they could enable completely new functions. So-called topological materials...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Im Focus: Gentle wall contact – the right scenario for a fusion power plant

Quasi-continuous power exhaust developed as a wall-friendly method on ASDEX Upgrade

A promising operating mode for the plasma of a future power plant has been developed at the ASDEX Upgrade fusion device at Max Planck Institute for Plasma...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

International conference QuApps shows status quo of quantum technology

02.07.2020 | Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

 
Latest News

X-ray scattering shines light on protein folding

10.07.2020 | Life Sciences

Looking at linkers helps to join the dots

10.07.2020 | Materials Sciences

Surprisingly many peculiar long introns found in brain genes

10.07.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>