Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Study of flower petals shows evolution at the cellular level

18.11.2011
A new study of flower petals shows evolution in action, and contradicts more that 60 years of scientific thought.

The findings are reported by a scientist from UC Santa Barbara and a research team from Harvard University in the Proceedings of the Royal Society B this week.

Columbine flowers, known as Aquilegia, evolved several lengths of petal spurs that match the tongue lengths of their pollinators, including bees, hummingbirds, and hawkmoths. The petal spurs are shaped like a tubular pocket and contain nectar at the tip. The spurs grow from 1 to 16 centimeters in length, depending on the species.

The research team discovered that longer spurs result from the lengthening of cells in one direction, called anisotropy, and not from an increased number of cells. This finding contradicts decades of scientific thinking that assumed the elongated petals form via continued cell divisions.

"When we went in and looked at this in detail, we found that even the super-long-spurred flower doesn't differ much in cell number from the short-spurred one," said Scott A. Hodges, professor in the Department of Ecology, Evolution, and Marine Biology at UCSB.

He said that most studies of shape, particularly of leaves and of some flower parts, have focused their attention primarily on genes controlling cell division. "What this study is saying is that you don't want to just look at those kinds of characteristics; here's this whole other way to produce a tremendous amount of shape diversity without involving cell divisions," said Hodges.

In long-spurred plants, the spurs reach the same length at the same point in time as the short-spurred flowers, but they keep on growing, said Hodges. The rest of the flower has to wait for the spurs to lengthen. Until then, the pollen can't be released and the ovules are not ready to be fertilized. The flower has to stop that part of development while the spurs grow. Then, almost a week later, those flowers become reproductive, after the spurs have grown longer.

The evolution of petal spurs in columbines is considered a textbook example of adaptive radiation. Like Darwin's finches, over time, the columbines evolved a variety of species to exploit different ecological niches. The short-spurred columbines can be easily pollinated by bees. Hummingbirds have long beaks and tongues and can pollinate flowers with spurs of medium length. Hawkmoths have very long tongues and can pollinate columbines with the longest spurs, such as Aquilegia longissima.

In addition to Hodges, the co-authors are Joshua R. Puzey, Sharon J. Gerbode, Elena M. Kramer, and Lakshminarayanan Mahadevan, all from Harvard University.

Gail Gallessich | EurekAlert!
Further information:
http://www.ucsb.edu

More articles from Life Sciences:

nachricht "Make two out of one" - Division of Artificial Cells
19.02.2020 | Max-Planck-Institut für Kolloid- und Grenzflächenforschung

nachricht Sweet beaks: What Galapagos finches and marine bacteria have in common
19.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

"Make two out of one" - Division of Artificial Cells

19.02.2020 | Life Sciences

High-Performance Computing Center of the University of Stuttgart Receives new Supercomuter "Hawk"

19.02.2020 | Information Technology

A step towards controlling spin-dependent petahertz electronics by material defects

19.02.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>