Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists discover how surfaces may have helped early life on Earth begin

04.03.2019

On early earth, a series of spontaneous events needed to happen in order for life as we know it to begin. One of those phenomena is the formation of compartments enclosed by lipid membranes.

New research by Irep Gözen, Elif Koksal, and colleagues at the University of Oslo reveals, for the first time, how these vesicles can self-assemble on surfaces without external input.


Spontaneously formed protocells, which resemble balloons anchored to a surface by a network of ropes, are visualized by 3D confocal microscopy.

Credit: Irep Gözen

The team discovered the most straight-forward and plausible explanation so far with the simplest assumptions. They will present their research at the 63rd Biophysical Society Annual Meeting, to be held March 2 - 6, 2019 in Baltimore, Maryland.

Gözen's lab was originally focused on biomaterials, not origins of life research.

"We were actually trying to do another experiment and this came as a discovery," said Gözen. "The formation of lipid tubes and the emergence of thousands of vesicles was happening spontaneously when we left lipids on a silicon dioxide surface."

The lipids in their experiment were similar to those in bacteria membranes and have water-loving heads and water-avoiding tails. Because of these water-preferring properties, they spontaneously organize with their tails facing inward and their heads facing out.

On the silicon dioxide surface, the lipids became sheets, with layers of these organized lipids. Due to the stickiness of the surface, at some points the two layers separate, and the top layer bulges out, creating tubes and then round balls as they gain more lipids.

The entire process is fully autonomous. A gentle flow from the movement of liquid can then cause these vesicles to detach from the surface creating protocells, like those believed to be a stepping-stone to the origin of life.

"This is a new and novel means of compartmentalization," Gözen said.

It is conceivable that something similar happened on early earth. Silicone dioxide, or silica, is one of the most abundant minerals on the earth's surface. Fatty molecules could have easily existed in the previological era, as confirmed by the results of their successful synthesis performed in possible primitive Earth conditions, together with their traces found in fossils and meteorites. Intriguingly, silicon dioxide was recently detected on Mars by the Curiosity Rover.

Another puzzle in life's beginnings is how genetic material got inside of protocells. It is not known whether the compartments formed around the already-existing lengthy genetic chains such as RNA, or if the small building blocks somehow found their way inside these tiny bubbles and made the chains inside.

Gözen and colleagues added a light-emitting organic molecule similar in size to nucleotides, the genetic building blocks, to the surrounding of the bubbles. Such molecules which were too big to diffuse through the wall of the bubble, could get inside without compromising the protocells. They speculate it gets through transient defects or pores in the protocell wall.

"Our research may explain, for the first time, the details of self-directed transition from weakly organized lipids on solid surfaces to protocells with secluded internal contents," Gözen said.

###

The Biophysical Society, founded in 1958, is a professional, scientific Society established to encourage development and dissemination of knowledge in biophysics. The Society promotes growth in this expanding field through its annual meeting, monthly journal, and committee and outreach activities. Its 9,000 members are located throughout the U.S. and the world, where they teach and conduct research in colleges, universities, laboratories and government agencies. http://www.biophysics.org.

Media Contact

Sean Winkler
swinkler@biophysics.org
240-290-5606

http://www.biophysics.org 

Sean Winkler | EurekAlert!
Further information:
https://www.biophysics.org/news-room/science-at-bps-2019-scientists-discover-how-surfaces-may-have-helped-life-on-earth-begin

More articles from Life Sciences:

nachricht To proliferate or not to proliferate
21.03.2019 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Discovery of a Primordial Metabolism in Microbes
21.03.2019 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Self-healing coating made of corn starch makes small scratches disappear through heat

Due to the special arrangement of its molecules, a new coating made of corn starch is able to repair small scratches by itself through heat: The cross-linking via ring-shaped molecules makes the material mobile, so that it compensates for the scratches and these disappear again.

Superficial micro-scratches on the car body or on other high-gloss surfaces are harmless, but annoying. Especially in the luxury segment such surfaces are...

Im Focus: Stellar cartography

The Potsdam Echelle Polarimetric and Spectroscopic Instrument (PEPSI) at the Large Binocular Telescope (LBT) in Arizona released its first image of the surface magnetic field of another star. In a paper in the European journal Astronomy & Astrophysics, the PEPSI team presents a Zeeman- Doppler-Image of the surface of the magnetically active star II Pegasi.

A special technique allows astronomers to resolve the surfaces of faraway stars. Those are otherwise only seen as point sources, even in the largest telescopes...

Im Focus: Heading towards a tsunami of light

Researchers at Chalmers University of Technology and the University of Gothenburg, Sweden, have proposed a way to create a completely new source of radiation. Ultra-intense light pulses consist of the motion of a single wave and can be described as a tsunami of light. The strong wave can be used to study interactions between matter and light in a unique way. Their research is now published in the scientific journal Physical Review Letters.

"This source of radiation lets us look at reality through a new angle - it is like twisting a mirror and discovering something completely different," says...

Im Focus: Revealing the secret of the vacuum for the first time

New research group at the University of Jena combines theory and experiment to demonstrate for the first time certain physical processes in a quantum vacuum

For most people, a vacuum is an empty space. Quantum physics, on the other hand, assumes that even in this lowest-energy state, particles and antiparticles...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Modelica Conference with 330 visitors from 21 countries at OTH Regensburg

11.03.2019 | Event News

Selection Completed: 580 Young Scientists from 88 Countries at the Lindau Nobel Laureate Meeting

01.03.2019 | Event News

LightMAT 2019 – 3rd International Conference on Light Materials – Science and Technology

28.02.2019 | Event News

 
Latest News

To proliferate or not to proliferate

21.03.2019 | Life Sciences

Magnetic micro-boats

21.03.2019 | Physics and Astronomy

Motorless pumps and self-regulating valves made from ultrathin film

21.03.2019 | HANNOVER MESSE

VideoLinks
Science & Research
Overview of more VideoLinks >>>