Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

RNA-based gene regulation with dynamic proteins: Shaping up to make the cut

03.11.2016

Before RNA copies of genes can program the synthesis of proteins, the non-coding regions are removed by the spliceosome, a complex molecular machine. The correct regulation of the splicing plays a central role for many cellular processes. By means of nuclear spin measurements and single-molecule fluorescence microscopy, a team of scientists has now discovered an unexpected mechanism in the assembly of the spliceosome.

Ribonucleic acids – RNAs for short – serve as intermediates in the ordered translation of the hereditary information stored in the DNA into blueprints for the synthesis of specific proteins. In the cell nucleus, defined segments of the DNA are first transcribed into RNA copies called messenger RNA precursors (pre-mRNAs).


The large subunit of U2AF binds to the mRNA precursor.

Image: Christoph Hohmann / NIM

In many cases, these primary transcripts contain interspersed sequences that interrupt the actual protein-coding sequence. These “introns” must be removed and the coding sequences spliced before the information can be used for protein synthesis.

Indeed, a given gene may encode for several different forms of a protein by a process called alternative splicing, which plays an important role in post-transcriptional gene regulation – for differently spliced mRNA strands code for different protein forms that may also differ in their function. All splicing operations are carried out by a complex molecular machine in the cell nucleus, which is referred to as the spliceosome.

Researchers led by Professor Don Lamb at the Department of Chemistry at LMU and Professor Michael Sattler (Helmholtz Zentrum München und Technical University of Munich (TUM)) have now shown that the distinct structural configurations adopted by a protein which is essential for assembly of the spliceosome on mRNA precursors have a critical influence on splicing efficiency.

Protein dynamics influence biological function

The spliceosome found in human cells is made up of many different subunits, which must be assembled onto the mRNA precursor in a series of carefully choreographed steps. The binding specificity of individual subunits is crucial for both spliceosome assembly and function.

“The assembly factor we have studied, called the U2 Auxiliary Factor or U2AF for short, is critical for the correct recognition of the splicing sites at one end of the introns,” says Lena Voithenberg, first author of the new paper.

U2AF itself is made up of two different subunits. In its free form, the larger of the two is a highly dynamic protein, as Voithenberg and her colleagues demonstrated by means of single-molecule fluorescence microscopy.

Experiments using nuclear magnetic resonance (NMR) spectroscopy carried out in parallel at the Bavarian Center for NMR (run jointly by the Helmholtz Zentrum München and the TUM) provided further information relating to the structure and conformational dynamics of U2AF.

“We found that the large subunit rapidly switches its conformation from an open to a closed structure on timescales of micro- to milliseconds,” Voithenberg explains, but only the open form can bind to the RNA.”

Moreover, the proportion of molecules in this conformation depends on the relative binding affinity of the RNA sequences available: Sequences that show a high affinity for the binding subunit therefore have a higher probability of being recognized – and cleaved – than those with a lower affinity.

Structural conformation regulates splicing efficiency

According to the Munich researchers, their results suggest that the different structural conformations adopted by the large subunit of U2AF serve to regulate the splicing efficiency at different splicing sites. This in turn has obvious implications for how mRNA precursors are cleaved and spliced, which in turn affects not only the structure of the final protein, but also the rate at which it is synthesized.

The correct regulation of alternative splicing plays a central role for many cellular processes, and errors in splicing contribute to cancer and many genetic diseases. Understanding the molecular basis of splicing is a starting point to develop innovative therapies for these diseases in the future.

The work was funded by the German Research Foundation (DFG) via the Clusters of Excellence Center for Integrated Protein Science Munich (CIPSM) and Nanosystems Initiative Munich (NIM), the SFB 1035, the Graduate Program 1721 and the Emmy Noether Program. The project was further supported by the Center for NanoScience and the BioImaging Network of the LMU, the Bavarian Molecular Biosystems Research Network of the Bavarian Ministry of Science and the Austrian Science Fund (FWF).

Publication:

Recognition of the 3′ splice site RNA by the U2AF heterodimer involves a dynamic population shift;
Lena Voith von Voithenberg, Carolina Sánchez-Rico, Hyun-Seo Kang, Tobias Madl, Katia Zanier, Anders Barth, Lisa R. Warner, Michael Sattler and Don C. Lamb; PNAS Early Edition, Oct., 31, 2016 – DOI: 10.1073/pnas.1605873113
http://www.pnas.org/content/early/2016/10/26/1605873113.abstract

Contact:

Prof. Dr. Michael Sattler
Technical University of Munich
Chair of Biomolecular NMR Spectroscopy
Lichtenbergstr. 4, 85748 Garching, Germany
Tel.: +49 89 289 13418 – E-mail: michael.sattler@ch.tum.de – Web: http://www.nmr.ch.tum.de/

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/short/article/33514/ Link to the Pressrelease

Dr. Ulrich Marsch | Technische Universität München

Further reports about: RNA cell nucleus gene regulation mRNA proteins splicing

More articles from Life Sciences:

nachricht Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View
22.06.2018 | University of Sussex

nachricht New cellular pathway helps explain how inflammation leads to artery disease
22.06.2018 | Cedars-Sinai Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>