Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers report in "Nature Chemistry" on cell-permeable nanobodies

19.07.2017

Scientists at the Technische Universität Darmstadt, Ludwig Maximilians University (LMU) Munich and the Leibniz Institute for Molecular Pharmacology (FMP) have managed to introduce tiny antibodies into living cells. The researchers now report on the synthesis and applications for these nanobodies in "Nature Chemistry".

Antibodies are one of the main weapons of our immune system. They dock to viruses, bacteria and other invaders that course through our blood, and thereby render them harmless. Antibodies also play a key role in the diagnosis and treatment of diseases and in research.


Ring peptides open the cell membrane door allowing antibodies and other therapeutic agents to enter cells.

Christoph Hohmann, Nanosystems Initiative Munich (NIM)

"One clear limitation is that due to their size and various other factors, antibodies are unable to permeate living cells," emphasises M. Cristina Cardoso, Professor of Cell Biology and Epigenetics in the Department of Biology at the TU Darmstadt.

Working in close collaboration with the research group led by Christian P. R. Hackenberger at the FMP Berlin, Professor of Chemical Biology at the Humboldt University of Berlin, the inter-disciplinary team has now, for the first time, managed to permeate living cells with small antibodies, also called nanobodies, and observe them microscopically. Medicine has extremely high hopes for these tiny antibodies. Although they do not occur in the human body, they have been found in camels and in cartilaginous fish.

"In order to open up the path into the cell for the nanobodies, we decorated them chemically with cyclic cell-permeating peptides that effectively act as keys to the direct permeation through the cell membrane into the cells," explains Christian Hackenberger. As the researchers report in the current issue of the renowned scientific journal "Nature Chemistry", the key peptides are either coupled stably to the nanobodies or, more loosely, so that the connection is dissolved on the inside of the cell.

The scientists successfully permeated living mouse and human cells with nanoantibodies, and examined their benefits. Cell-permeable nanobodies are suited both to the recognition and manipulation of antigens and to the analysis of protein-protein interactions. The researchers were able to observe the interaction between the tumour inhibitor p53 and its counterpart, protein HDM2, using the nanobodies and special fluorescent markings. This interaction plays an important part in the development of cancer.

Nanobodies are also highly promising medically because they are able to transport proteins to living cells. The symptoms of Rett syndrome, for instance, a genetic disease with aspects of autism, could possibly be reduced by the protein Mecp2. The researchers permeated mouse cells with Mecp2 bound to nanobodies, and were able to prove that the protein was still intact and it reached its target in the cell.

According to the report in "Nature Chemistry", the cell-permeable nanobodies are general tools that deliver therapeutically relevant proteins into living cells. This opens up a new door to treatments for diseases that have so far been untreatable.

The work by the researchers from Darmstadt, Berlin and Munich was made possible by the DFG priority programme 1623, which deals with the synthesis of functionalized proteins.

Publication:
“Cell-permeable nanobodies for targeted immunolabelling and antigen manipulation in living cells“; online:
http://dx.doi.org/10.1038/nchem.2811

Contact:
Prof. Dr. M. Cristina Cardoso
TU Darmstadt Department of Biology
Tel.: +49-6151 16-21882
E-Mail: Cardoso@bio.tu-darmstadt.de

Prof. Dr. Christian Hackenberger
Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP)
Tel: +49-30 94793-181
Email: hackenbe@fmp-berlin.de

Weitere Informationen:

http://dx.doi.org/10.1038/nchem.2811

Claudia Staub | idw - Informationsdienst Wissenschaft
Further information:
http://www.tu-darmstadt.de/

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>