Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers measure cancer cell mechanics in living animals using nanoparticles

30.04.2020

A first-of-its-kind nanoparticle-based in vivo imaging technique that may one day be used to help diagnose and even treat cancer has been developed by researchers collaborating from Michigan State, Johns Hopkins and Stanford universities.

The technique captures mechanical properties in living subjects that probe fundamental relationships between physics and in vivo (in a living organism) biology. The results are published in the journal Materials Today.


An early tumor (in green are tumor cells) with nanoparticles (in red) in them were used to quantify the mechanical properties using microrheology. The first image from a video taken within a living mouse and the inset shows individual tumor cells and nanoparticles at a higher resolution.

Credit: Bryan Smith

Bryan Smith, associate professor of biomedical engineering at MSU, worked with colleagues to develop the tiny particles, which, once inside living cells, can reveal important information about cell structure -- including how tumor cells physically change as they form a tumor.

"We engineered the ability to measure and quantify the nanomechanical properties of individual living cells within the body of a living animal for the first time," Smith said.

In a study earlier this year, Smith and his team designed nanoparticles that helped "eat" away atherosclerosis, the plaque buildup in arteries that can lead to heart attack. The particles selectively entered immune system cells known as macrophages, delivering a drug instructing cells to devour the harmful plaques.

Now, Smith and his colleagues have created a technique using different nanoparticles that can be embedded into various cell types, including cancerous breast cells, in live animals. Analyzing how the particles move within the cell can reveal a lot about its internal physical properties.

"There previously existed no method to examine mechanical properties in living subjects -- for example, in mammals -- with high spatial resolution," Smith said. "Such techniques promise to open entirely new avenues of inquiry for both disease diagnosis and treatment."

The mechanical properties of biological tissues have been known to play a major role in many disease states, including heart disease, inflammation and cancer, as well as normal physiology such as cell migration and organism development. In the current study, Smith and his team used nanoparticles to first compare the mechanical properties between cells in culture -- both standard 2D and 3D -- and in live animals.

Tracking the movement of the nanoparticles revealed that the environment in which the cells are observed greatly affects their mechanical properties - which could mean that certain cell models may not be such valid representations of live animals.

"This tells cancer scientists interested in cancer mechanics that 2D conditions may poorly replicate, and that certain 3D conditions get substantially closer, to mimicking conditions within the live mouse," Smith said.

The next part of the experiment looked at what actually happens to the internal structure of cancer cells as they begin to form tumors. Previous methods couldn't answer the question because they were too invasive to test in living subjects.

Again, observing the movement of the nanoparticles within the cells, the team measured how "compliant," or soft, the cells were. Importantly, they found that normal cells' pliability remained steady over time, but as cancer cells formed a tumor over the period of a week, they stiffened.

"We found that as a tumor begins to form in a living mouse, individual tumor cells mechanically stiffen. This is a fundamental finding which is ultimately likely to have implications for cancer spread (metastasis) and tumor lethality," Smith said. "The discovery was made possible by integrating state-of-the-art imaging and particle tracking technologies from our and our collaborators' labs."

The research has a number of promising applications in medicine. One of these is simply evaluating which cell culture methods are enough like living organisms to provide meaningful information. Another is measuring the cell mechanical properties of common biological functions, including organ development, in living organisms.

Perhaps the most exciting application may be in disease diagnosis and treatment, Smith said. Nanoparticles might be used to monitor the health of cells and the types of changes they undergo in disease processes - and may even alter that course.

Smith and his colleagues plan to look at the formation and dissemination of cancer metastases, which cause about 90% of cancer deaths.

"I hope one day we'll be able to treat the physics of metastasis," he said. "But, we must first understand the mechanics and how changing them impacts cell behavior. We're now looking into this."

###

(Note for media: Please include a link to the original paper in online coverage: https://www.sciencedirect.com/science/article/abs/pii/S1369702120300985?via%3Dihub)

Michigan State University has been working to advance the common good in uncommon ways for 160 years. One of the top research universities in the world, MSU focuses its vast resources on creating solutions to some of the world's most pressing challenges, while providing life-changing opportunities to a diverse and inclusive academic community through more than 200 programs of study in 17 degree-granting colleges.

Media Contact

Caroline Brooks
brooks78@msu.edu
517-420-8376

 @MSUnews

http://msutoday.msu.edu/journalists/ 

Caroline Brooks | EurekAlert!
Further information:
https://msutoday.msu.edu/news/2020/researchers-measure-cancer-cell-mechanics-in-living-animals-using-nanoparticles/

Further reports about: MSU Nanoparticles cancer cells diagnosis living cells living organisms tumor cells

More articles from Life Sciences:

nachricht Turning carbon dioxide into liquid fuel
06.08.2020 | DOE/Argonne National Laboratory

nachricht Tellurium makes the difference
06.08.2020 | Friedrich-Schiller-Universität Jena

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>