Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers develop model of 'near-optimal' genetic code

29.08.2013
Researchers have created a model that may explain the complexities of the origins of life. Their work, which appears in the Journal of the Royal Society Interface, offers new insights into how RNA signaling likely developed into the modern "genetic code."

"Our model shows that today's genetic code probably resulted from a combination of selective forces and random chance," explained Justin Jee, a doctoral student at NYU School of Medicine and the paper's lead author.

The study's other co-authors included: Bud Mishra, who has appointments at NYU's Courant Institute of Mathematical Sciences and the Sackler Institute of Graduate Biomedical Sciences at NYU School of Medicine; Andrew Sundstrom of the Courant Institute; and Steven Massey, an assistant professor in the University of Puerto Rico's Department of Biology.

The researchers sought to account for the composition of the genetic code, which allows proteins to be built from amino acids with high specificity based on information stored in a RNA or DNA genome. This translation process between the nucleic acids and amino acids is remarkably and mysteriously universal; the same code is shared in all organisms from bacteria to human beings. At the same time, the genetic code is nearly, but not completely, optimal in terms of how "good" it is at specifying particular amino acids for particular nucleic acid sequences.

Since the code's discovery in the 1960's, researchers have wondered: how is it that a near-optimal code became so universal?

To address this question, the researchers created a model of genetic code evolution in which multiple "translating" RNAs and "genomic" RNAs competed for survival. Specifically, the translating RNAs were able to link amino acids together based on information stored in genomic RNA, but with varying levels of specificity.

In running computer simulations of RNA interactions, they could see two phenomena. First, it was necessary for the translating and genomic RNAs to organize into cells, which aided the coordination of a code between the translating and genomic RNAs. Second, selective forces led a single set of translating RNAs to dominate the population. In other words, the emergence of a single, universal, near-optimal code was a natural outcome of the model. Even more remarkably, the results occurred under realistic conditions—specifically, they held under parameters such as protein lengths and rates of mutation that likely existed in a natural RNA world.

"The most elegant ideas in this paper are rather obvious consequences of a well-studied model based on sender-receiver games," noted Mishra, the paper's senior author. "Yet the results are still very surprising because they suggest, for example, that proteins, the most prized molecules of biology, might have had their origin as undesirable toxic trash. Other studies based on phylogenomic analysis seem to be coming to similar conclusions independently."

This research was funded by National Science Foundation grants CCF-0836649 and CCF-0926166 as well as by a National Defense Science and Engineering Graduate Fellowship from the U.S. Department of Defense.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

Further reports about: Biomedical Science Medicine NYU RNA amino acid computer simulation genetic code

More articles from Life Sciences:

nachricht Colorectal cancer risk factors decrypted
13.07.2018 | Max-Planck-Institut für Stoffwechselforschung

nachricht Algae Have Land Genes
13.07.2018 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>