Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New research sheds light on fly sleep circuit

28.11.2008
Brandeis scientists research fly sleep to advance understanding of human sleep and its disorders

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in humans. The study demonstrates that in flies, as in mammals, the sleep circuit is intimately linked to the circadian clock and that the brain's strategies to govern sleep are evolutionarily ancient.

In the study, researchers quieted ventral lateral neurons (LNvs) and induced sleep in the flies by essentially altering the excitability of these cells with GABA, a major inhibitory neurotransmitter. GABA controls sleep onset and duration by opposing arousal. The same mechanism governs sleep in humans, explained Katherine Parisky, a post-doctoral researcher who coauthored the study led by Brandeis biologist Leslie Griffith's laboratory.

When it is time to wake up, the LNvs are believed to release a neuropeptide known as PDF, rousing the cells, and in turn, the flies. The cycle starts over again when GABA kicks in to quiet these neurons and give the flies a good night's sleep. The study found that mutant flies without PDF or its receptor were hypersomnolent.

The researchers' findings have implications for how sleep-promoting drugs are tested and developed. Currently, drugs that target GABA receptors are among the most widely-used sleep-promoting agents.

"Normally, to treat insomnia in humans, you use global drugs that suppress GABA throughout the brain," explained Griffith. "But it would be ideal to suppress only cells that are part of the sleep circuit."

Sleep problems, from insomnia to narcolepsy, affect millions of people and are extremely costly in both economic and human health terms. The next stage of research will involve researching how PDF controls wakefulness, said Parisky.

"We're taking apart the circuit bit by bit to see how it affects sleep," she said. "We already know that in humans, some people have problems falling asleep, while others can't stay asleep, and there are probably two different mechanisms for these behaviors in flies, as well," Parisky explained.

Fruit flies offer an excellent model organism in which to study sleep because their sleep circuit is relatively simple yet seemingly very similar to the sleep circuit in humans. A greater understanding of how the sleep circuit works in flies could help scientists to design and develop drugs that strategically target different sleep problems.

Laura Gardner | EurekAlert!
Further information:
http://www.brandeis.edu

More articles from Life Sciences:

nachricht A novel synthetic antibody enables conditional “protein knockdown” in vertebrates
20.08.2018 | Technische Universität Dresden

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>