Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research reveals molecular pathway behind invasive prostate cancers

20.05.2009
University of Cincinnati (UC) cancer and cell biologists have identified a new molecular pathway key to the development of invasive prostate cancers.

In a preclinical study led by Maria Diaz-Meco, PhD, the UC team found that simultaneous inactivation of two particular genes—known as PTEN and Par-4—caused the rapid development of invasive prostate cancer tumors in mice.

"We knew that independent mutations in either of these genes could result in benign tumors, but when those changes occur simultaneously it appears to have a synergistic effect that causes prostate cancer," explains Diaz-Meco, an associate professor of cancer and cell biology at UC and corresponding author of the paper. "This switch affects the cell's ability to both grow and survive, leading to more aggressive and invasive tumors."

"This is an important discovery because—until now—those signaling pathways were not clearly defined. Without a clear molecular target, it's impossible to develop effective drugs to treat this disease without causing harm to the patient," she adds.

Diaz-Meco and her team report their findings online ahead of print in Proceedings of National Academy of Sciences (PNAS) the week of May 18.

PTEN is a well-defined gene shown to be suppressed in prostate cancer tumors, as well as in other types of cancer. Its mutation has been shown to result in the formation of benign tumors. Par-4 gene is also mutated in prostate cancer, but this study is the first to report its relationship with PTEN mutations and aggressive prostate cancer tumor development.

The UC study was done in a laboratory mouse model over the course of two years. Data from the mouse model was correlated and compared to human prostate cancer tissue samples to determine if their findings were applicable in humans as well.

"Theoretically, this new knowledge could be used to better categorize a tumor's aggressiveness by measuring the levels of PTEN and Par-4 expressed in a tissue biopsy," adds Diaz-Meco. "That would help clinicians make tough decisions about how aggressively to treat a patient's prostate cancer and minimize unnecessary treatment."

Cancer and cell biologists are working on identifying the molecular targets involved in cancer progression to develop a better understand the mechanisms of action that lead to prostate cancer so that pharmaceutical companies and clinicians can develop better methods of diagnosing and treating the disease.

Funding for this study comes from the National Cancer Institute and National Institutes of Health. Coauthors of the study include UC's Shadi Abu-Baker, Jayashree Joshi, Anita Galvez, Elias Castilla, and Jorge Moscat, PhD. Spanish National Cancer Research Center's scientists Pablo Fernandez-Marcos, Marta Canamero, Manuel Collado, Gema Moreno-Bueno and Manuel Serrano and Carmen Saez of the Biotechnology Centre of Oslo in Norway also contributed to the study.

Amanda Harper | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>