Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research could lead to new drugs for major diseases

11.06.2012
Researchers at the University of Gothenburg, Sweden, are working to develop substances that can prevent parasites, bacteria and fungi from producing essential proteins, research that could, in the long term, lead to new drugs for several major diseases.

The World Health Organization (WHO) has announced that aminoacyl-tRNA synthetases – a type of enzyme – are important targets for the development of new drugs for several major diseases such as cancer, various parasitic diseases and bacterial and fungal infections.

These enzymes are involved in the production of proteins (protein synthesis) in all organisms. Their job is to ensure that the right amino acid is linked to the growing protein chain. These enzymes are essential for all living organisms.

Challenging research field
Researchers at the University of Gothenburg are currently undertaking basic research in this challenging field. The aim is to prevent the enzyme from producing proteins in bacteria, parasites or fungi, without stopping it from functioning in the human body.

"We're collaborating with researchers in several countries," says researcher Itedale Namro Redwan. "Our role has been to design and to synthesise substances that can be used for the development of drugs against parasitic diseases."

Looking for an effective substance
The enzymes' job of ensuring that the right amino acid is linked to the growing protein chain works in the same way in all types of cell, be they human or parasitic.

"The real challenge is identifying substances that act on enzymes in the parasite alone, without affecting the human enzymes at the same time," says Itedale Namro Redwan, who is making substances that can prevent bacterial and parasitic enzymes from functioning, but do not affect human enzymes. If this proves possible, it will help in the development of drugs for several major diseases.

"One of our main objectives has been to produce potent and selective substances that can be used to gain understanding of how these enzymes work. A greater understanding of their function would contribute to the development of medication for diseases like elephantitis."

Could prevent major diseases
Elephantitis, also known as filiaris, affects more than 120 million people in the developing world, and is caused by a worm that lives in the infected person's lymphatic vessels.

The potentially active molecules are being designed using computer-based molecular modelling techniques, with the resulting molecules subsequently synthesised via various chemical reactions.

"One of the best things about being a medicinal chemist is getting to plan a synthetic pathway that'll result in a specific substance, starting the reaction and then realising that the reaction's has worked," says Itedale Namro Redwan. "Better still is finding out that the molecule has performed as expected in a biological test."

The activity of the synthesised substances is assessed by partners through biological testing on, for example, aminoacyl-tRNA synthetase isolated from E. coli or filiaris parasites.

The thesis "Design and Synthesis of Potential Aminoacyl-tRNA Synthetase Inhibitors" has been successfully publicly defended at the University of Gothenburg on 11 May 2012.

For more information, please contact: Itedale Namro Redwan, Department of Chemistry and Molecular Biology
Telephone: +46 (0)31 786 9097
E-mail: itedale.namro@chem.gu.se

Bibliographic data
Title: Investigation, Optimisation and Synthesis of Sulfamoyloxy-linked Aminoacyl-AMP Analogues. Authors: Itedale Namro Redwan, Thomas Ljungdahl and Morten Grøtli.

Journal: Tetrahedron, 2012, 68, 1507-1514. http://www.sciencedirect.com/science/article/pii/S0040402011018783

Helena Aaberg | idw
Further information:
http://www.gu.se
http://hdl.handle.net/2077/28794

More articles from Life Sciences:

nachricht Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea
10.12.2018 | Max-Planck-Institut für Marine Mikrobiologie

nachricht Carnegie Mellon researchers probe hydrogen bonds using new technique
10.12.2018 | Carnegie Mellon University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>