Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

HATS off to combat asthma

05.12.2007
Two University of Nottingham studies exploring the causes and treatment of asthma and Chronic Obstructive Pulmonary Disease (COPD) could lead to the development of drugs to battle these debilitating conditions.

The Division of Respiratory Medicine at the University has been awarded a total of £1.24m in grants to study respiratory disease. The Wellcome Trust has awarded Prof Alan Knox and Dr Linhua Pang £700,000 to research transcriptional control of inflammatory gene expression in asthma — allowing the team to examine the part inflammatory mediators play in the way asthma sufferers react to allergens.

A second grant of £540,000 from MRC to Prof Knox and his colleagues Prof Peter Fischer and Prof David Heery will explore histone acetyl transferase (HAT) inhibitors in asthma and COPD. This study will investigate a bank of plant extracts at the University of Strathclyde, seeking compounds that could combat the intercellular processes that result in the symptoms of asthma and COPD — inflammation of the airways which can lead to coughing, breathlessness and increased chest infections.

Though they are different diseases, asthma and COPD affect the human body in a similar way. In asthma, allergens irritate the lungs, in COPD, this is done by cigarette smoke. This irritation inflames the sufferer’s airways, which the muscles then close, creating a narrowing effect.

Research done at the University over the past 15 years has found that the muscle layer in the airway is more complex than has traditionally been thought. As well as going into spasm during asthma and COPD attacks the muscle layer produces a wide range of mediators and cytokines — proteins that act as chemical signallers when it comes into contact with allergens or cigarette smoke. In asthma and COPD sufferers, these proteins are produced by stimulation of airway muscle cell walls in the lungs, releasing intracellular signalling proteins called ‘transcription factors’ which alter the DNA of the cell and activate messenger RNA. It is these ‘transcription factors’ which activate the inflammation by causing release of mediators and cytokines.

The activation status of these transcription factors is determined by the balance between two competing groups of enzymes called histone acetyl transferase (HATs) and histone deacetylases (HDACs). In asthma and COPD sufferers the balance is altered so that the HATs are activated and HDACs suppressed with the result that inflammation is switched on. The investigators at the University think that if the balance could be restored by inactivating HATs then the mediators and cytokines will be switched off and inflammation dampened down.

By exploring plant extracts that may reduce the activation of HATs within airway cells, the researchers may isolate compounds that could be used to suppress inflammation in respiratory disease. Any drug successfully synthesised from such compounds could potentially revolutionise the treatment of respiratory disease. There is also the potential to treat other inflammatory diseases, such as rheumatoid arthritis and Inflammatory Bowel Disease.

Professor Alan Knox, of the Division of Respiratory Medicine at the University, said: “The majority of people with asthma have access to reasonably good anti-inflammatory treatments that can keep their conditions under control. But up to 20 per cent of sufferers don’t respond well to the treatments currently available. And when it comes to COPD, anti-inflammatory drugs aren’t very effective.

“By tracking the process which triggers the inflammation and then identifying the compounds that inhibit or activate these crucial enzymes, we could put into motion the development of a drug which could have a huge impact on the lives of those suffering from respiratory and other inflammatory diseases.”

Emma Thorne | alfa
Further information:
http://www.nottingham.ac.uk

Further reports about: COPD HAT Respiratory Treatment compounds inflammation inflammatory sufferers

More articles from Life Sciences:

nachricht Looking for new antibiotics
08.04.2020 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

nachricht Research against the corona virus - tissue models for rapid drug testing
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: When ions rattle their cage

Electrolytes play a key role in many areas: They are crucial for the storage of energy in our body as well as in batteries. In order to release energy, ions - charged atoms - must move in a liquid such as water. Until now the precise mechanism by which they move through the atoms and molecules of the electrolyte has, however, remained largely unknown. Scientists at the Max Planck Institute for Polymer Research have now shown that the electrical resistance of an electrolyte, which is determined by the motion of ions, can be traced back to microscopic vibrations of these dissolved ions.

In chemistry, common table salt is also known as sodium chloride. If this salt is dissolved in water, sodium and chloride atoms dissolve as positively or...

Im Focus: Harnessing the rain for hydrovoltaics

Drops of water falling on or sliding over surfaces may leave behind traces of electrical charge, causing the drops to charge themselves. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz have now begun a detailed investigation into this phenomenon that accompanies us in every-day life. They developed a method to quantify the charge generation and additionally created a theoretical model to aid understanding. According to the scientists, the observed effect could be a source of generated power and an important building block for understanding frictional electricity.

Water drops sliding over non-conducting surfaces can be found everywhere in our lives: From the dripping of a coffee machine, to a rinse in the shower, to an...

Im Focus: A sensational discovery: Traces of rainforests in West Antarctica

90 million-year-old forest soil provides unexpected evidence for exceptionally warm climate near the South Pole in the Cretaceous

An international team of researchers led by geoscientists from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) have now...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

13th AKL – International Laser Technology Congress: May 4–6, 2022 in Aachen – Laser Technology Live already this year!

02.04.2020 | Event News

 
Latest News

Doubts about basic assumption for the universe

08.04.2020 | Physics and Astronomy

Accelerating AI Together – DFKI Welcomes NVIDIA as Newest Shareholder

08.04.2020 | Information Technology

Ear’s inner secrets revealed with new technology

08.04.2020 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>