Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Molecular Mimetism As An Enzyme Inhibitor

05.12.2007
Over time viruses have developed a wide range of varied strategies to ensure their survival and proliferation inside their target cells.

These strategies could be considered intelligent, calculated actions, since viruses can either take over some of the cell’s components and use them for their own benefit or deactivate particular functions of the cell in order to allow for a more effective and trouble free infection process.

This very interesting subject has been the focus of the investigations of the “Centro de Biología Molecular Severo Ochoa” (CBMSO; UAM-CSIC) working together with the “Centro de Investigaciones Biológicas (CIB; CSIC)”.

The outcome of their research on viral strategies that affect cellular functions has recently been published.

... more about:
»DNA »Salas »UDG »enzyme »p56

For several years, Professor Margarita Salas from the CBMSO has dedicated part of her research efforts to the study of the replication mechanism of virus 29, which infects the Bacillus subtilis, harmless bacteria commonly found in the soil. Her work has contributed towards a better understanding of the interactions between the viruses and their target cells at a molecular level. In an article published last year in the Journal of Biological Chemistry (Vol. 281: 7068-7074; 2006), Professor Salas and her team described an important discovery: the protein p56 of virus 29 inhibits the activity of the cellular protein uracil-DNA-glycosylase (UDG). It is known that this enzyme, present in all living organisms, is involved in the DNA repair processes and hence, it avoids mutations in the cellular genome.

In order to carry out its function, the UDG enzyme first identifies the damaged DNA by locating uracil residues and then attaches itself to the DNA to repair it. Recently, Professor Salas team, in collaboration with the research group managed by Professor Manuel Espinosa from the CIB, have published their new discoveries in Nucleic Acids Research (Vol. 35: 5393-5401; 2007), recounting how the viral protein p56 manages to inhibit the activity of the UDG enzyme. Their experiments show that the protein p56 conceals the part of the UDG enzyme that interacts with the damaged DNA so that there is no possibility of attachment.

The protein p56 might accomplish this by imitating the structural characteristics of DNA in order to mislead the UDG enzyme. If the theory is corroborated, this would be another case of molecular mimesis as an enzyme inhibitor technique. The future work by Professor Salas and her team will be dedicated to substantiating this hypothesis.

Oficina de Cultura Científica | alfa
Further information:
http://dx.doi.org/10.1093/nar/gkm584

Further reports about: DNA Salas UDG enzyme p56

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

NASA keeps watch over space explosions

16.11.2018 | Physics and Astronomy

UNH scientists help provide first-ever views of elusive energy explosion

16.11.2018 | Physics and Astronomy

How the gut ‘talks’ to brown fat

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>