Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Healing Materials

28.11.2007
Catalyst-free chemistry makes self-healing materials more practical

A new catalyst-free, self-healing material system developed by researchers at the University of Illinois offers a far less expensive and far more practical way to repair composite materials used in structural applications ranging from airplane fuselages to wind-farm propeller blades.

The new self-healing system incorporates chlorobenzene microcapsules, as small as 150 microns in diameter, as an active solvent. The expensive, ruthenium-based Grubbs’ catalyst, which was required in the researchers’ first approach, is no longer needed.

“By removing the catalyst from our material system, we now have a simpler and more economical alternative for strength recovery after crack damage has occurred,” said Jeffrey Moore, the Murchison-Mallory Professor of Chemistry at Illinois. “Self-healing of epoxy materials with encapsulated solvents can prevent further crack propagation, while recovering most of the material’s mechanical integrity.”

... more about:
»CHEMISTRY »catalyst »epoxy »self-healing »solvent

The new chemistry is described in a paper accepted for publication in Macromolecules, and posted on the journal’s Web site.

During normal use, epoxy-based materials experience stresses that can cause cracking, which can lead to mechanical failure. Autonomous self-healing – a process in which the damage itself triggers the repair mechanism – can retain structural integrity and extend the lifetime of the material.

“Although we demonstrated the self-healing concept with a ruthenium-based catalyst, the cost of the catalyst made our original approach too expensive and impractical,” said Moore, who also is affiliated with the university’s Frederick Seitz Materials Research Laboratory and with the Beckman Institute. “Our new self-healing system is simple, very economical and potentially robust.”

In the researchers’ original approach, self-healing materials consisted of a microencapsulated healing agent (dicyclopentadiene) and Grubbs’ catalyst embedded in an epoxy matrix. When the material cracked, microcapsules would rupture and release the healing agent, which then reacted with the catalyst to repair the damage.

In their new approach, when a crack forms in the epoxy material, microcapsules containing chlorobenzene break. The solvent disperses into the matrix, where it finds pockets of unreacted epoxy monomers. The solvent then carries the latent epoxy monomers into the crack, where polymerization takes place, restoring structural integrity.

In fracture tests, self-healing composites with catalyst-free chemistry recovered as much as 82 percent of their original fracture toughness.

The new catalyst-free chemistry has taken down the barriers to cost and level of difficulty, Moore said. “From an economics and simplicity standpoint, self-healing materials could become part of everyday life.”

With Moore, co-authors of the paper are graduate student and lead author Mary Caruso, former postdoctoral research associate David Delafuente (now a chemistry and physics professor at Augusta State University), visiting University of Texas at Austin undergraduate student Victor Ho, materials science and engineering professor Nancy Sottos, and aerospace engineering professor Scott White.

The work was funded by the Air Force Office of Scientific Research and the National Science Foundation.

James E. Kloeppel | University of Illinois
Further information:
http://www.uiuc.edu

Further reports about: CHEMISTRY catalyst epoxy self-healing solvent

More articles from Life Sciences:

nachricht Scientists uncover the role of a protein in production & survival of myelin-forming cells
19.07.2018 | Advanced Science Research Center, GC/CUNY

nachricht NYSCF researchers develop novel bioengineering technique for personalized bone grafts
18.07.2018 | New York Stem Cell Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>