Blind mice shed light on human sight loss

A team from the Trinity College Dublin and the Sanger Institute, Cambridge (UK), led by Dr Arpad Palfi and Dr Jane Farrar of the Smurfit Institute of Genetics, Trinity College Dublin used mutant mice that model the human eye disease retinitis pigmentosa (RP). The researchers compared these mice with wild-type mice, testing their hypothesis that changes in microRNA expression may be evident in retinal degeneration.

Retinitis pigmentosa is the most common form of inherited retinal degeneration affecting more than one million individuals worldwide. Progressive photoreceptor cell death eventually leads to blindness. Mutations in more than 40 genes have been linked to the disease and no therapy is currently available.

The team found very similar patterns of microRNA expression in retinas of two wild-type mouse strains, but, microarray profiling revealed that in these wildtype mice the patterns of microRNA expression differed between the brain and retina. Furthermore, there were clear differences in the microRNA expression patterns between wild type and mutant mice. The researchers found alterations greater than two-fold in the expression of 9 microRNAs in mutant mouse retinas compared with those of the wild-type mice. These microRNAs potentially regulate genes implicated in retinal diseases and genes encoding components involved in cell death and intracellular trafficking.

“The results from the study suggest that miRNA expression is perturbed during retinal degeneration” says Dr Jane Farrar of Trinity College Dublin. “Modulation of expression of retinal microRNAs may possibly represent a future therapeutic strategy for retinopathies such as retinitis pigmentosa.”

Media Contact

Charlotte Webber alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

A universal framework for spatial biology

SpatialData is a freely accessible tool to unify and integrate data from different omics technologies accounting for spatial information, which can provide holistic insights into health and disease. Biological processes…

How complex biological processes arise

A $20 million grant from the U.S. National Science Foundation (NSF) will support the establishment and operation of the National Synthesis Center for Emergence in the Molecular and Cellular Sciences (NCEMS) at…

Airborne single-photon lidar system achieves high-resolution 3D imaging

Compact, low-power system opens doors for photon-efficient drone and satellite-based environmental monitoring and mapping. Researchers have developed a compact and lightweight single-photon airborne lidar system that can acquire high-resolution 3D…

Partners & Sponsors