Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NO solution to high salt intake

08.04.2002


Nitric oxide, normally toxic at high concentrations, is now known to be involved in a number of functions within the nervous system of many animals. New research being presented today at the Society for Experimental Biology conference reveals for the first time that nitric oxide is also present within the neurosecretory system of fish and may help them cope with changes in environmental salinity.



Within the mammalian nervous system it was thought that nerve cells communicated exclusively using `traditional` neurotransmitters - small peptide molecules which travel between nerve cells binding to their surface and causing them to become electrically excited. It is now believed that a new class of transmitter exists - nitric oxide (NO). As a gas, NO is able to penetrate the cell and act directly within it, modulating its activity and allowing a rapid reaction to environmental change. This transmitter has been implicated in a variety of nervous functions from olfaction -the sense of smell - to hormone release.

The presence and activity of nitric oxide has, in the last 10 years, been demonstrated in almost every species of animal, says Dr Carla Cioni of `La Sapienza` University, Rome. At the conference in Swansea, Dr Cioni will show that NO may play a role within the neurosecretory system of fish. Fish possess two neurosecretory systems - essentially nerve cells which are able to release hormones - in the brain and, strangely, the tail. The system in the tail is known as the urophysis and produces urotensins. These proteins are released into the blood and cause circulatory changes which may help the fish to cope with changes in salinity.


Dr Cioni, and colleague Dr Bordieri, have been able to identify the presence of a specific enzyme, neuronal NO synthase, within these cells. This enzyme plays a crucial role in producing nitric oxide. Dr Cioni suggests that the production of this gas may modulate the release of urotensins into the bloodstream thus altering their concentration within the blood and their effect on blood pressure. Support for this theory has come from collaborative work with British scientists. It seems that the electrical (nervous) activity of the fish`s neurosecretory cells can be altered artificially by adding, or removing NO. In the presence of excess NO activity increases, and in its absence it decreases, lending considerable support to Dr Cioni`s theory.

"The next stage of our research to determine whether NO is directly involved in salinity regulation, where fish adjust to varying salinity as they move through different waters. But it seems clear that the NO system is a virtually universal phenomenon within the nervous systems of animals."

Jenny Gimpel | alphagalileo

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>