Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover pathway to cell size, division

01.08.2007
Cut and run

Organisms precisely regulate cell size to ensure that daughter cells have sufficient cellular material to thrive or to create specific cell types: a tiny sperm versus a gargantuan egg for example. In single-celled organisms such as yeast and bacteria, nutrient availability is the primary determinant of cell size. In animal cells, size is controlled in large part by a molecule that senses the blood sugar-dependent hormone insulin.

Petra Levin, Ph.D., Assistant Professor of Biology at Washington University in St. Louis, and her laboratory have recently identified a trio of enzymes that act in concert to link nutrient availability to cell size in the soil bacterium Bacillus subtilis.

Levin and her lab are looking into the factors that control the timing and position of cell division in B. subtilis. B. subtilis serves as the model system for a large family of bacteria that includes the causative agents of several important diseases, including anthrax and botulism. By learning how these simple organisms regulate division, she hopes to better understand why this process goes awry in cancer cells resulting in uncontrolled growth and aberrant division.

... more about:
»FtsZ »divide »pathway »subtilis

A primary focus of the Levin lab's research is a protein called FtsZ. FtsZ is an ancestor of tubulin, the protein that is responsible for distributing duplicated chromosomes between dividing human cells. In bacteria, FtsZ forms a ring at the future division site. The FtsZ ring then recruits all other components necessary for cell division and serves as the scaffolding for the entire division process.

The factors that regulate FtsZ ring formation determine when and where the cell is going to divide. "Theoretically a cell could divide anywhere and at anytime," said Brad Weart, a graduate student in Levin's lab. "The cell has to very precisely restrain that process so that it only happens when and where the cell wants it to happen."

In their most recent paper, published in the July 27, 2007 issue of Cell, Weart et al. identified a metabolic sensor that links cell division and cell size in B. subtilis with nutritional availability. This sensor is comprised of a three enzyme pathway that was previously shown to be involved in synthesizing a modified component of the cell membrane. The Levin lab's data indicates the pathway also has a major role in cell division. "So far this has been the only pathway that's been identified in bacteria that directly regulates cell size," says Levin.

Typically, cells in nutrient-rich environments grow bigger than cells in nutrient-poor environments. The Levin lab determined that mutations in genes encoding the three enzymes resulted in cells that were small even when they were in a nutrient-rich environment. "Basically, the cells had no way to tell the division apparatus to wait until they've reached the size they should be. The cells would divide when they were still very short," said Levin. "It was almost as if they were growing in really great media but they didn't know it."

Knowing when to divide

Further work indicated that the mutation perturbed FtsZ ring formation. In the cell, FtsZ exists in a balance between its unassembled and assembled state. The enzyme trio regulated FtsZ ring formation by changing this balance — pushing FtsZ towards its unassembled state when the cells were growing in nutrient-rich conditions, thereby delaying cell division and increasing cell size.

All three enzymes in the pathway are sensitive to glucose levels, and the pathway is therefore well suited to communicating nutritional information directly to the cell's division apparatus. In nutrient-poor conditions the enzymes no longer inhibit FtsZ assembly, allowing the FtsZ ring to form when the cells are still small, resulting in the formation of smaller daughter cells. The third enzyme in the pathway, UgtP, physically interacts with FtsZ to prevent ring formation. UgtP responds to low levels of glucose (nutrient-poor conditions) by becoming unstable and forming what appear to be inactive aggregates.

Disrupting this pathway leads to defects in chromosome segregation. A cell that is too small is unable to effectively move its DNA away from the division site and the resultant daughter cells frequently do not contain all the genetic material that they should. By coordinating cell size with growth rate, cells are able to maintain proper distribution of DNA.

This work is also something of a cautionary tale about the limitations of genome sequencing. "More and more often we are finding that metabolic enzymes have more than one function," said Levin, "There is no hint from their sequence that they have other activities so you really need to delve deeper and apply different methods to identify them."

Levin notes that her research is uncovering just the "tip of the iceberg" in the field of cell size control, but identifying genes such as ugtP helps Levin and other researchers get a better handle on precisely what determine how big a cell will be.

Tony Fitzpatrick | EurekAlert!
Further information:
http://www.wustl.edu

Further reports about: FtsZ divide pathway subtilis

More articles from Life Sciences:

nachricht Microscope measures muscle weakness
16.11.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Good preparation is half the digestion
16.11.2018 | Max-Planck-Institut für Stoffwechselforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>