Zebrafish: It's not your parents' lab rat

Zebrafish cost about a dollar at the pet store. They grow from eggs to hunting their own food in three days. Adults can lay up to 500 eggs at once… and you have more in common with them than you think.

“For all their differences, humans and zebrafish aren't that dissimilar,” said Rice University zebrafish expert Mary Ellen Lane. “For every zebrafish gene we isolate, there is a related gene in humans.”

In her most recent work, Lane, graduate students Catherine McCollum and Shivas Amin, and undergraduate Philip Pauerstein zeroed in on a gene called LMO4 that's known to play roles in both cell reproduction and in breast cancer. Using the tools of biotechnology, the team studied zebrafish that couldn't transcribe the LMO4 gene, and they observed marked enlargement in both the forebrain and optical portions of the embryos. When they overexpressed the LMO4 gene, making more protein than normal, those same areas shrank. The study will appear later this year in the journal Developmental Biology.

“The study suggests that LMO4 independently regulates two other genes that promote growth in those areas of the embryo,” said Lane, assistant professor of biochemistry and cell biology. “It fills in another piece of the bigger picture of what's going on during neurological development.”

Zebrafish — like rats and fruit flies before them — are becoming regular contributors on research ranging from cancer to cocaine addiction. For example, zebrafish were used a landmark 2005 study that led scientists to the human gene that regulates skin color.

Lane's zebrafish studies explore one the major unexplained areas in developmental biology — how the brain and central nervous system develop. It helps that zebrafish embryos grow from just a single cell to having a forebrain, hindbrain, spinal column and eye within a scant 24 hours. It also helps that the embryos are transparent and develop outside their mothers' bodies — and can thus been seen under a microscope at every step of their development.

“It's a beautiful organism for experiment,” Lane said. “It develops in a very regular way, so any abnormality is easy to spot, even for undergraduates with only a few days training.”

Media Contact

Jade Boyd EurekAlert!

More Information:

http://www.rice.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Compact QKD system

… paves the way to cost-effective satellite-based quantum networks. Researchers demonstrate successful quantum key distribution between space lab and four ground stations. Researchers report an experimental demonstration of a space-to-ground…

Exploring quantum electron highways with laser light

Spiraling laser light reveals how topological insulators lose their ability to conduct electric current on their surfaces. Topological insulators, or TIs, have two faces: Electrons flow freely along their surface…

First image of antigen-bound T-cell receptor at atomic resolution

Immune system: Antigen binding does not trigger any structural changes in T-cell receptors – Signal transduction probably occurs after receptor enrichment. The immune system of vertebrates is a powerful weapon…

Partners & Sponsors