Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic study reveals how endocrine cell types are produced in the pancreas

06.03.2007
An international research team has identified the process by which pancreatic progenitor cells give rise to different endocrine cell types.

This work, published March 6, 2007 in the journal Developmental Cell, sheds new light on the mechanism by which insulin-producing beta cells are generated in the pancreas, and may open the door to new treatment avenues for type 1 diabetes.

The pancreas plays a critical role in our ability to convert food into fuel. Type 1 diabetes is a chronic (lifelong) disease in which beta cells in the pancreas lose their ability to produce the amounts of insulin needed to control blood sugar levels. Those afflicted suffer reduced quality of life and risk life-threatening complications from the disease. This form of diabetes usually strikes children and young adults, although disease onset can occur at any age. Type 1 diabetes accounts for 5 percent to 10 percent of all diagnosed cases of diabetes and has no cure. Insulin injections provide treatment, but their effectiveness is limited.

One possible avenue for treatment would be to restore the insulin-producing cells in the pancreas. But relatively little is known about how the body produces these cells during development and how the cells are regenerated in adults. Scientists do know that all pancreatic endocrine cells, including insulin-producing beta cells, arise from a single line of “progenitor cells” that express the gene Neurogenin 3.

The experiments carried out by researchers from the Swiss Institute for Experimental Cancer Research and EPFL, in collaboration with INSERM and Vanderbilt University, used transgenic mice to explore the stages by which the different endocrine cell types, including insulin-producing beta cells, are produced from the progenitor cells. They showed that the trigger causing progenitor cells to switch from generating one cell type to generating another does not require signals from cells surrounding the progenitors.

By pinpointing the mechanisms involved in the different stages of endocrine cell production, this work sheds new light on when and how insulin-producing beta cells are generated in the pancreas. These experiments should help the future identification of a molecule responsible for the ability to generate beta cells, and might lead to techniques to restore these cells in individuals with type 1 diabetes.

Mary Parlange | alfa
Further information:
http://www.epfl.ch

Further reports about: Endocrine beta insulin-producing pancreas progenitor

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>