Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Environment and Exercise May Affect Research Results

21.02.2007
A recently completed study at The University of Arizona may have implications for the thousands of scientists worldwide who use “knockout” mice in their research.

In the study, Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, lead researcher Ann Baldwin, PhD, suggests that environmental factors may play a large part in research findings that investigators assume are due simply to genetic differences. Further, the study research indicates that appropriate environments may counteract the effects of some genetic deficiencies.

The “knockout” technique is used widely by researchers to aid in understanding physiological functions at the cellular and molecular level. Essentially, it eliminates one or both copies of a gene that produces a specific protein or enzyme.

Dr. Baldwin, a professor of physiology and psychology at the UA College of Medicine, developed a study focusing on mice with only one copy of a gene that encodes for an extracellular matrix protein, fibulin-4. The extracellular matrix, often referred to as connective tissue, supports tissue cells. Fibulin-4 is localized in the aortic media and is essential for maintaining arterial integrity. Dr. Baldwin wanted to determine whether these mice, known as heterozygous fibulin-4 knockout mice, showed arterial defects on a microscopic scale, although outwardly they appeared to be normal.

... more about:
»Aorta »Genetic »effect »knockout

Using high-powered electron microscopy, she found small areas of disorganized tissue, referred to as “gaps,” in the aortas of the heterozygous fibulin-4 knockout mice. The number of gaps found in the knockout mice was approximately 100 times greater than those found in the control, or wild-type, mice.

After preliminary experiments were performed, a second purpose for the study developed, and the researchers set about investigating a hypothesis that the pathologies they observed would be ameliorated by enriched housing conditions.

In the initial experiments, the test mice were housed four-per-cage in standard cages, measuring 26 cm long x 16 cm wide x 12 cm high and containing only bedding. To investigate the effect of enriched housing conditions, the research team repeated the experiments with test animals housed two-per-cage in cages measuring 33 cm long x 25 cm wide x 25 cm high. The larger cages were equipped with a shelf, ladder, exercise wheel and plastic tube.

Observed at night on specific occasions during the testing period, the animals housed in the larger cages spent approximately 40 percent of the observation time exercising in the wheel, while mice housed in the standard cages remained relatively stationary.

Significantly, the mice housed in the standard cages were heavier than those in the larger cages – about twice the weight at the same age – and they showed large quantities of adipose, or fat, tissue around the aorta.

The mice in the larger cages showed virtually no fat around the aorta. They also showed far fewer regions of disorganized tissue in the aorta than those housed in standard cages.

The evidence suggests that even though the knockout mice were genetically predisposed to arterial damage, simply housing them in an enriched environment, where they could perform their normal functions, reduced the number of gaps occurring in the aorta.

Dr. Baldwin explains that one important implication is that housing conditions can affect the differences between wild-type and knockout strains. Thus, research findings that are assumed to be due simply to genetic differences might be interpreted incorrectly; environmental factors may play an important role.

Secondly, as this study indicates, appropriate environments may counteract the effects of some genetic deficiencies. For example, mice given the opportunity to exercise fared better than their counterparts in standard cages.

Knockout Mice: Is it Just Genetics? Effects of Enriched Housing on Fibulin-4+/- Mice, is supported by the National Center for Research Resources and the National Center for Complementary and Alternative Medicine. The full text appears in the Wednesday, Feb. 21, edition of PLoS ONE, the international, peer-reviewed, open-access, online publication from the Public Library of Science (PLoS).

Dr. Baldwin’s research team includes Lihua Marmorstein, PhD, assistant professor of the Department of Ophthalmology and Vision Science at The University of Arizona College of Medicine; Elizabeth Cudilo, UA medical student; and Hamda Al Naemi, PhD, head of the Department of Physiology, University of Qatar.

Citation: Cudilo E, Al Naemi H, Marmorstein L, Baldwin AL (2007) Knockout Mice: Is It Just Genetics? Effect of Enriched Housing on Fibulin-4+/2 Mice. PLoS ONE 2(2): e229. doi:10.1371/journal.pone.0000229

Andrew Hyde | alfa
Further information:
http://www.plosone.org
http://dx.doi.org/10.1371/journal.pone.0000229

Further reports about: Aorta Genetic effect knockout

More articles from Life Sciences:

nachricht Magic number colloidal clusters
13.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Record levels of mercury released by thawing permafrost in Canadian Arctic
13.12.2018 | University of Alberta

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Magic number colloidal clusters

13.12.2018 | Life Sciences

UNLV study unlocks clues to how planets form

13.12.2018 | Physics and Astronomy

Live from the ocean research vessel Atlantis

13.12.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>