Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New protein super-family discovered with critical functions for animal life

14.02.2007
The following press release refers to an upcoming article in PLoS ONE. The release has been provided by the article authors and/or their institutions. Any opinions expressed in this are the personal views of the contributors, and do not necessarily represent the views or policies of PLoS. PLoS expressly disclaims any and all warranties and liability in connection with the information found in the release and article and your use of such information.

Biologists have discovered a new super-family of developmental proteins that are critical for cell growth and differentiation and whose further study is expected to benefit research on cancer and the nerve-cell repair.

The protein super-family, which existed before the emergence of animals about 850 million years ago, is of major importance for understanding how life evolved in primordial times. The discovery will be described in the 14 February 2007 issue of the journal PLoS ONE.

"This super-family is highly divergent, even in animals with an ancient lineage such as the sea anemone. This super-family also evolves rapidly, so its proteins may provide a model system for investigating how rapidly mutating genes contribute to, and are likely necessary for, the diversity and adaptability of animal life," explains Penn State Assistant Professor Randen Patterson, the senior author of the study. The new protein superfamily is named "DANGER," an acronym for "Differentiation and Neuronal Growth Evolve Rapidly."

... more about:
»DANGER »Genome »PLoS »Patterson »super-family

The discovery was led by Patterson and Damian van Rossum, a postdoctoral scholar at Penn State in University Park, Pennsylvania, and collaborators at Johns Hopkins University in Baltimore, Maryland. "Most DANGER proteins have not been researched, but from what little we do know these proteins, they are critical for cell growth and differentiation," van Rossum says.

Because so many genomes for diverse organisms have been sequenced and annotated, the discovery of a new and deeply rooted protein family is quite rare. The relationship of the six family members comprising the DANGER super-family escaped detection due to the high rates of mutations between family members, although a few family members had been detected previously and had been shown to control the differentiation of cells into organs in worms, fish, and mice. Deletion of these their DANGER genes led to gross structural changes and prenatal death.

These findings also have clinical relevance, according to the researchers. "Many DANGER proteins are surrounded by transposable elements, which are pieces of DNA around genes that help the genes migrate back and forth throughout the genome," Patterson says. Because of this feature, DANGER genes can move throughout the genome, which could have positive or negative health consequences. "One member of the gene family resides in the genome at an area responsible for a human disease, the Smith-Magenis syndrome, which results in severe physical and mental retardation," Patterson explains. "DANGER genes also contain transposable elements that may participate in the genetic disturbances associated with chronic myeleoid leukemia."

One member of the super-family has been identified as playing a role in the development of the nervous system. "In cell culture and spinal cord neurons, the protein coded for by this gene stimulates lengthening and branching of neurons," Patterson says. Because many other DANGER proteins also are expressed in neurons, discovering their functions may be a key to deciphering the complexity of neuronal growth and development.

In addition to Patterson and van Rossum, investigators in this study include N. Nikolaidis and D. Chalkia at Penn State and D. N. Watkins, R. K. Barrow, and S. H. Snyder at Johns Hopkins. The research was supported by grants from the National Institutes of Health and the Searle Foundation.

Andrew Hyde | alfa
Further information:
http://dx.doi.org/10.1371/journal.pone.0000204
http://www.plosone.org

Further reports about: DANGER Genome PLoS Patterson super-family

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>