Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scientists catch cold

11.02.2002


Snow may chill us through one or more receptors
© SPL


New skin receptor is the tip of the iceberg.

A snowball in the face or a chilly breeze around the ankles opens a molecular trap door in our skin’s nerve cells, two studies now show1,2. A third suggests that this, the first cold sensor to be identified, is just the tip of the iceberg3.

How sensory neurons detect a drop in temperature is very hard to study because it affects so many cell processes.



David Julius of the University of California, San Francisco, and his colleagues resorted to using menthol, which has the same effects on cold-sensitive nerves as a drop in temperature. "Technically it is much easier to use a chemical," says Julius.

Julius’s team took genes for a host of unknown receptors normally found on the surface of sensory nerve cells and inserted them into human kidney cells1. The confused kidney cells dutifully produced the receptors on their surface, which the team then exposed to menthol.

One receptor fitted the bill perfectly. It now has the catchy name cold- and menthol-sensitive receptor (CMR1); it is an ion channel. It opens in the presence of menthol, allowing potassium and calcium ions to flood into a nerve cell. Cooling has the same effect on it.

In a separate study, using different methods, Ardem Patapoutin at the Scripps research Institute in La Jolla, California identified another, possibly the same, cold receptor. While it’s too early to tell, Patapoutin says he’d "bet they’re the same".

A specific receptor for cold is a surprise, says Amy MacDermott a physiologist at Columbia University in New York. "It is totally unknown and extremely interesting," she says. Given the difficulties of studying the mechanisms of cold detection, Julius’s team "makes a very good case," she says.

Cold comfort

A single sensor doesn’t explain everything. Félix Viana, a physiologist at Miguel Herná¡ndez University in Alicante, Spain, and colleagues have found that cold-sensitive nerves have a unique number of the ordinary potassium ion channels that are common to all nerves. "This specialized blend of ion channels makes them sensitive to cooling," he says.

The Spanish group looked for a specific receptor but didn’t find one, says Viana. But "just because you don’t find something it doesn’t mean it’s not there," he admits.

The three studies present new and different explanations for how we detect cold. Physiologist Arthur Craig at Barrow Neurological Institute in Phoenix, Arizona, wonders whether a lone cold sensor would be diverse enough to explain the range of temperatures that our skin is sensitive to. Viana’s model accounts for this, he points out.

Like any well-engineered system, the body’s temperature-sensing network almost certainly has back-up mechanisms. Says Craig: "Biology is based on redundancy" - the teams are probably just working on different parts of the problem. "We can be sure that the biology is more complex than either study," he adds.

References

  1. McKemy, D. D., Neuhausser, W. M. & Julius, D. Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature advance online publication, (2002).
  2. Peier, A. M. et al. A TRP channel that senses cold stimuli and menthol. Cell advance online publication, (2002).
  3. Viana, F., de la Peña, E. & Belmonte, C. Specificity of cold thermotransduction is determined by differential ionic channel expression. Nature Neuroscience advance online publication, (2002).


TOM CLARKE | © Nature News Service
Further information:
http://www.nature.com/nsu/020204/020204-14.html

More articles from Life Sciences:

nachricht Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia
23.04.2019 | Cincinnati Children's Hospital Medical Center

nachricht Bacteria use their enemy -- phage -- for 'self-recognition'
23.04.2019 | Chinese Academy of Sciences Headquarters

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum gas turns supersolid

Researchers led by Francesca Ferlaino from the University of Innsbruck and the Austrian Academy of Sciences report in Physical Review X on the observation of supersolid behavior in dipolar quantum gases of erbium and dysprosium. In the dysprosium gas these properties are unprecedentedly long-lived. This sets the stage for future investigations into the nature of this exotic phase of matter.

Supersolidity is a paradoxical state where the matter is both crystallized and superfluid. Predicted 50 years ago, such a counter-intuitive phase, featuring...

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

Marine Skin dives deeper for better monitoring

23.04.2019 | Information Technology

Geomagnetic jerks finally reproduced and explained

23.04.2019 | Earth Sciences

Overlooked molecular machine in cell nucleus may hold key to treating aggressive leukemia

23.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>