Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nanoscale microscope sheds first light on gene repair

14.11.2006
Proteins called H2AX act as "first aid" to DNA, among other roles. For the first time, scientists using the world's most powerful light microscope (the only one of its kind in the Americas) have seen how H2AX is distributed in the cell nucleus: in clusters, directing the first aid/repair after DNA injuries to the region where it is really needed.

Many biological processes lie out of the visual reach of scientists. The benefits of high-resolution electron microscopy are often offset by disruptive sample preparation requirements. Light microscopy allows easier sample prep and observations of living cells, but it has limited resolution. By manipulating how light waves behave, however, biophysicists are expanding the limits of light microscopy, and one of the latest advances--the 4Pi microscope--provides never-before-seen views of cellular components, including structures within the nucleus.

In a paper published in the Proceedings of the National Academy of Sciences, Joerg Bewersdorf of the Institute for Molecular Biophysics at The Jackson Laboratory, with collaborators Brian Bennett of the UMass Medical School and Leica Microsystems and Kendall Knight of the UMass Medical School, used the 4Pi microscope to examine the cellular response to a type of severe damage to the genetic material, DNA double-strand breaks. Such breaks provoke a rapid and highly coordinated series of events to identify and repair the damage. The response is critical, and there is an increased risk for cancer, developmental abnormalities and immunological problems when components of the repair processes are defective.

Traditional microbiological and genetics techniques can shed light on the molecular pathways of repair, but they don't address the astonishingly complex three-dimensional structure of the genetic material in the nucleus. 4Pi microscopy allows researchers to actually see the response in three dimensions, at resolutions down to 100 nm. Therefore, the role of the physical structures in various processes within the nucleus can now be visualized.

... more about:
»4Pi »Bewersdorf »DNA »H2AX »Microscopy »Nucleus »clusters

"The general application of these methods will provide unprecedented insights into cellular molecular events," said Bewersdorf. "This study represents a significant advance in our ability to visualize and quantify nuclear proteins in 3D."

Bewersdorf, Bennett and Knight examined a protein called H2AX, a kind of histone. Histones are structural proteins that act as spools around which DNA is wound, and they can also play roles in gene regulation and gene repair. H2AX is an early responder to DNA damage, and its change to what is known as gamma-H2AX is important for the coordination of signaling and repair activities. But it had not been known how H2AX is distributed throughout the nucleus or why its conversion to gamma-H2AX is limited to within a short distance of a break site. By using selective staining techniques and 4Pi visualization, Bewersdorf and colleagues determined that H2AX is distributed in distinct clusters uniformly throughout the nucleus and that the structure of these clusters may determine the boundaries of where gamma-H2AX spreads in response to a break.

"The clusters may provide a platform for the immediate and robust response observed following DNA damage," said Bewersdorf. "Moving forward, we will analyze the localization of the H2AX clusters relative to other nuclear components."

Joyce Peterson | EurekAlert!
Further information:
http://www.jax.org

Further reports about: 4Pi Bewersdorf DNA H2AX Microscopy Nucleus clusters

More articles from Life Sciences:

nachricht Climate Impact Research in Hannover: Small Plants against Large Waves
17.08.2018 | Leibniz Universität Hannover

nachricht First transcription atlas of all wheat genes expands prospects for research and cultivation
17.08.2018 | Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>